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Abstract— By adopting on a notion of stochastic differential
contraction, the paper presents new results on the incremental
mean squared gain (IMSG) analysis of nonlinear systems with
stochastic inputs. The relative power between two stochastic
processes is defined as the asymptotic average (over time) of
the second moment of the point-wise distance (in some metric)
between the two processes. The IMSG of a system is then
defined as the relative power between two output trajectories
driven by two independent instances of i.i.d. inputs with unit
relative power. While contracting metrics have been previously
used for analysis of nonlinear systems, the formulation and
analysis method in this paper lead to new conditions that yield
a more accurate upper bound on the system gain. The idea is to
introduce a notion of stochastic differential contraction which
does not explicitly embed an exponential rate of contraction.
This approach is more suitable for analysis of systems with
stochastic inputs. In particular, and unlike previous approaches,
the standard H2-norm analysis results for linear systems can
be recovered as a special case in this setting.

I. INTRODUCTION

Contraction theory, which can be seen as an extension of
the classical Lyapunov theory to analysis of the behavior
of system trajectories with respect to each other, instead of
around nominal equilibria, has a long history in the nonlinear
systems literature. According to [1] and [2], the earliest
references on the subject appear to be in the math circles [3]–
[7], with further and independent grounding and theoretical
developments contributed by various authors including [8]
and [9]. These methods have found applications in various
engineering problems including analysis of limit cycles [10],
system identification [11], [12], synchronization of nonlinear
oscillators [13], process control [14] and general stability
analysis [15]. Recently, such methods have been revisited and
extended to analysis of system gains for nonlinear systems
with stochastic inputs [16], [17].

Previous approaches to contraction analysis of nonlinear
systems with stochastic inputs [16], [17], rely on an exponen-
tial rate of contraction, which leads to Lyapunov inequalities
of the form:

u(t+ 1)− µu(t) ≤ φ̄(w1(t), w2(t)), ∀t ∈ Z+, (1)

where µ < 1 is the contraction rate and u(t) =
ψ̄(x1(t), x2(t)) is a functional that needs to be bounded
from above. Here, x1(·) and x2(·) are two trajectories of
the system corresponding to two different inputs w1(·) and
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w2(·). Inequalities of the form (1) inevitably lead to upper
bounds on u(·) that scale like

1

1− µ
, (2)

as µ approaches to 1, which is identical in nature to the
scaling that arises from a worst-case analysis. This worst-
case type scaling is particularly evident when the underlying
system is linear, in which case the contraction rate µ is equal
to the square of the modulus of the dominant pole.

In contrast to [16] and [17], we define a notion of stochas-
tic differential contraction, i.e., a metric which contracts only
in expectation and does not explicitly embed an exponential
rate of contraction. Therefore, the associated Lyapunov in-
equalities do not impose an exponential rate of decay on the
distance between trajectories. Instead, they require that the
underlying Lyapunov function decreases (in expectation) by
an amount that does not explicitly depend on the value of
the function itself (unlike the exponential decay rate case).
Intuitively, we propose conditions that amount to Lyapunov
inequalities of the form:

v(t+ 1)− v(t) ≤ φ(w1(t), w2(t))− ψ(x1(t), x2(t))

where ψ(·, ·) is a suitable function that we wish to bound
from above along the system trajectories. This approach
allows us to avoid an inverse scaling of the form (2), and
obtain sharper bounds than those in the existing literature.
Interestingly, with this approach we recover the standard H2

analysis results for linear systems [18] as a special case. To
the best of our knowledge this does not apply to the existing
results in the literature, indicating that our results are less
conservative.

Finally, our results are presented in terms of implicit non-
linear equations (descriptor form) that define the underlying
dynamics. This is an attractive feature because many engi-
neering systems including networks with optimization in the
loop, systems with algebraic constraints, and parametrically
identified systems from input/output data [12], are naturally
represented in such implicit forms.

A. Preliminaries

Notation 1: The sets of non-negative real numbers and
integers are denoted by R+ and Z+ respectively. For a
vector v ∈ Rl, vk denotes the k-th element of v, and
|v| denotes the standard 2-norm: |v|2 def

=
(∑l

i=1 |vi|
2
)

.
We will use |v|P to denote the standard quadratic norm
(semi-norm) with respect to a positive definite (semidefinie)
symmetric matrix P : |v|2P = vTPv. The space of Rl-valued



functions u : Z+ 7→ Rl with finite power

‖u‖2P
def
= lim sup

T→∞

1

T

T∑
t=0

|u (t)|2P

is denoted by `
P

2 .
With a slight abuse of notation, we denote discrete-time

stochastic processes using functions defined over the domain
of integers. If u : Z+ 7→ Rl is a stochastic process, then it
is said to have finite average power if:

E ‖u‖2P
def
= lim sup

T→∞

1

T

T∑
t=0

E |u(t)|2P <∞.

The space of all such sequences is denoted by E`P2 . For i.i.d.
sequences the above definition is equivalent to the underlying
distribution having finite second moment.When the standard
2-norm is applied (i.e., P = Il) we drop P from all the
introduced notations. For a differentiable function f : Rn 7→
Rm, we use ḟx(·) or simply ḟ(·) to denote the Jacobian:
ḟ (x) = Jx(f(x)) = df (x) /dx. Since throughout the paper
time is discrete, this notation would not be confused with
derivative with respect to time. The cone of positive semi-
definite (PSD) matrices in Rn×n is denoted by Sn+. Finally,
Tr(X) denotes the trace of a square matrix X .

Definition 1: Incremental Mean Squared Gain (IMSG):
Let W denote the class of admissible input signals w(·)
for a discrete-time dynamical system Σ. Let Y denote the
signal space for the output y(·). Given a pair of positive
semidefinite matrices P and Q of appropriate dimensions,
the (P,Q)-scaled incremental mean squared gain of Σ is
denoted by

GP,Q(w → y),

and is defined to be the minimal γ ≥ 0 such that the
inequality

inf
γ

: γ2E ‖w − w̃‖2P − E ‖y − ỹ‖
2
Q ≥ 0 (3)

is satisfied for all input/output pairs (w, y) ∈ W × Y and
(w̃, ỹ) ∈ W × Y such that

w − w̃ ∈ E`P2 .

II. MAIN RESULTS
A. Stochastic Differential Contraction Analysis of Implicit
Dynamical Systems

Consider discrete-time dynamical system Σ specified by
the implicit state-space model:

Σ : ψ (x(t+ 1), x(t), w(t)) = 0 (4)

y(t) = h (x(t)) (5)

where ψ : Rn × Rn × Rm 7→ 0n, and h : Rn 7→ Rp are
continuously differentiable functions.

Assumption 1: The function ψ is invertible in the sense
that the equation ψ(a, x, w) = 0 has a unique solution a ∈
Rn for all x ∈ Rn, and w ∈ Rm.

Assumption 2: The class of admissible input signalsW is
restricted to i.i.d. sequences w : Z+ 7→ Rn with bounded

covariance matrix W
def
= E[wwT ] ∈ Rn×n. Furthermore, w

is independent of the initial condition x(0) of Σ.

The following theorem presents our main result.
Theorem 1: Consider the system Σ defined in (4)–(5).

Suppose that Assumptions 1 and 2 are satisfied. Let
g : Rn 7→ Rn and f : Rn 7→ Rn be a pair of continuously
differentiable functions such that the equation

g (x(t+ 1)) = f (x(t)) + w(t) (6)
y(t) = h(x(t)) (7)

is satisfied for every pair of sequences x : Z+ 7→ Rn and
w : Z+ 7→ Rn that satisfy (4). Suppose that there exist
positive semidefinite matrices P ∈ Sn+ and Q ∈ Sn+ such
that the following inequality holds:

|ġ(x)∆|2P ≥
∣∣∣ḟ(x)∆

∣∣∣2
P

+
∣∣∣ḣ(x)∆

∣∣∣2
Q
, ∀x,∆ (8)

Then, the (P,Q)-scaled IMSG of Σ is upper bounded by 1:

GP,Q(w → y) ≤ 1. (9)

Proof: Let (x1, y1) and (x2, y2) be two solutions of
Σ corresponding to two different inputs w1(·) and w2(·),
and initial conditions x1(0) and x2(0). Let (xγ , yγ) be the
solution corresponding to the input

wγ(t) = γw1(t) + (1− γ)w2(t),

and the initial condition:

xγ(0) = γx1(0) + (1− γ)x2(0),

Then ∆γ(t) = ∂xγ(t)/∂γ and Γγ(t) = ∂yγ(t)/∂γ are well-
defined continuous functions of γ. Thus, considering (6) and
(7) with x = xγ and y = yγ , and differentiating with respect
to γ we obtain the following linear dynamics for ∆γ(t):

ġ(xγ(t+ 1))∆γ(t+ 1) = ḟ(xγ(t))∆γ(t) (10)

+ w1(t)− w2(t)

Γγ(t) = ḣ(xγ(t))∆γ(t) (11)

Define the functional S : R2n 7→ R+ according to:

S : (x,∆) 7→ |ġ(x)∆)|2P
For every fixed γ ∈ [0, 1], let Vγ : Z+ 7→ R+ be the function
that is defined as follows:

Vγ(t) = S(xγ(t),∆γ(t)).

It then follows from (10) that:

EVγ(t+ 1) = E |ġ(xγ(t+ 1))∆γ(t+ 1)|2P (12)

= E
∣∣∣ḟ(xγ(t))∆γ(t)

∣∣∣2
P

+ E |w1(t)− w2(t)|2P
(13)

where, the equality between (12) and (13) follows from
independence of noise from the state, which in turn follows



from Assumption 2. It then follows from equations (8) and
(11) – (13) that:

EVγ(t+ 1)−EVγ(t) ≤ E |w1(t)− w2(t)|2P
−E

∣∣∣ḣ(xγ)∆γ(t)
∣∣∣2
Q

(14)

Integrating with respect to γ and summing up both sides of
the above inequality yields:

1

T

T−1∑
t=0

∫ 1

0

E
∣∣∣ḣ(xγ)∆γ(t)

∣∣∣2
Q
dγ

≤ E
∣∣w1(t̂)− w2(t̂)

∣∣2
P

+
1

T

∫ 1

0

EVγ(0)dγ (15)

where t̂ ∈ {0, . . . , T − 1} is an arbitrary time. Since

|y1(t)− y2(t)|2Q =

∣∣∣∣∫ 1

0

ḣ(xγ)∆γ(t)dγ

∣∣∣∣2
Q

≤
∫ 1

0

∣∣∣ḣ(xγ)∆γ(t)
∣∣∣2
Q
dγ, (16)

it follows from (15) and (16) that

lim sup
T→∞

1

T

T−1∑
t=0

E |y1(t)− y2(t)|2Q

≤ E
∣∣w1(t̂)− w2(t̂)

∣∣2
P

= 2Tr(PW ) (17)

This completes the proof.

Remark 1: Note that condition (8) is equivalent to the
following matrix inequality constraint:

ġ(x)TP ġ(x) � ḟ(x)TP ḟ(x) + ḣ(x)TQḣ(x), ∀x.

In the following corollary, the standard H2 analysis results
for linear systems (see, e.g., [18]) are recovered.

Corollary 1: Consider the linear system

x(t+ 1) = Ax(t) + w(t)

y(t) = Cx(t)

where w(·) is a zero-mean i.i.d. process. If there exists a
PSD matrix P such that

P � ATPA+ CTC, (18)

then,

lim sup
T→∞

1

T

T−1∑
t=0

E |y(t)|2 ≤ Tr(PW ) (19)

Proof: Apply Theorem 1 with g(x) = x, f(x) = Ax,
and h(x) = Cx. Then (8) reduces to (18), and (19) follows
from (17) and the fact that (w(·), x(·), y(·)) = (0, 0, 0) is an
admissible solution.

III. DISCUSSION AND NUMERICAL EXAMPLES
A. Linear Systems

In this section we briefly discuss our results and compare
with the existing literature. For the moment let us consider
the simple case where (6) is of the form:

x(t+ 1) = ax(t) + w(t)

where all variable are scalars, a ∈ (−1, 1), and W = 1. With
Q = 1, (8) reduces to:

P − a2P ≥ 1

and we have

E ‖x− x̃‖2 ≤ inf
P

2Tr(PW ) = 2(1− a2)−1.

This is in agreement with the bound that can be obtained
from the results of [17] with µ = a2, D = 1, β = 1 and
M = 1.

Next, let us consider a linear system with two states,
defined via the following state space model:

A =

[
a 0
1 0.9

]
, B = I2, C = I2 D = 02,

and W = I2. From Corollary 1, our results can be written
as the following optimization problem:

min
P

Tr(P ) (20)

subject to: P � ATPA+ I2

Again, we emphasize that these are the LMI conditions
that arise in the standard H2 analysis of linear systems.
The results of [17] can be summarized as the following
optimization problem:

min
P,µ

Tr(P )

1− µ
(21)

subject to: µP ≥ ATPA

P ≥ I2
Let γ1 and γ2 denote the optimal values of optimization
problems (20) and (21) respectively. Figure 1 shows the ratio
γ2/γ1 as the parameter a in the A matrix approaches to 1.
These results show the advantage of the method presented in
the paper and suggest that the contraction analysis approach
of [17] can be more conservative than Theorem 1.

Remark 2: It has been shown in [16] that the correspond-
ing bounds for stochastic contraction analysis of nonlinear
systems are optimal in the sense that they can be achieved.
The methods in [17] are essentially the extensions of the
results of [16] to state dependent metrics. Note, however, that
our results do not contradict the optimality claims of [16] and
[17], as those bounds are achievable by a scalar dynamical
system [16]. For scalar systems, our bound is equal to that
of [17]. The proof of the optimality results as presented in
[16] does not extend to higher dimensions.
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Fig. 1. The ratio γ2/γ1 as parameter a varies from 0.9 to 0.99.

B. A Simple Nonlinear Example
Consider discrete-time system Σ̃ defined by:

x1(t+ 1) =
a− 1

a
x1(t)− 5

a
x2(t) +

1

c
e−x3(t) + w(t) (22)

x2(t+ 1) =
1

a
x1(t) + x2(t) +

1

c
e−x3(t) + w(t) (23)

x3(t+ 1) = b(x1(t)2 + x2(t)2)−1 (24)

y(t) =
(
x1(t), x2(t), e−x3(t)

)T
(25)

where a, b and c are positive constants. In this example we
set a = b = c = 100. Also, E[w(t)2] = 1. Rewriting (24) as

e−x3(t+1) = e−b(x1(t)
2+x2(t)

2)−1

, (26)

we obtain a new representation of Σ̃ in the implicit form
defined by (22), (23), and (26). It can be shown that Equation
(8) cannot be satisfied if Theorem 1 is directly applied to
(22)–(24). Reformulating Equation (24) in the exponential
form (26) serves as a suitable nonlinear coordinate transfor-
mation that facilitates the analysis. In order to apply Theorem
1 to (22), (23), and (26), we compute the Jacobian matrices:

ġ(x) =

 1 0 0

0 1 0

0 0 φ3

 , ḟ(x) =


a−1
a − 5

a φ3
1
a 1 φ3

φ1 φ2 0


where

φ3 = φ3(x) = −1

c
e−x3

and

φ1 = φ1(x) = x1φ̄(x1, x2), φ2 = φ2(x) = x2φ̄(x1, x2)

where

φ̄(x1, x2) = 2b
e−b(x

2
1+x

2
2)

−1

(x21 + x22)2
.

Note also that ḣ(x) = ġ(x). It can be shown that with
Q = I3, and a block diagonal matrix P = diag(P̄ , p), where
P̄ ∈ S2+, and p > 0, a sufficient condition for (8) is given
by the following matrix inequality constraint:[

AT P̄A− P̄ + pµI2 AT P̄L

LT P̄A LT P̄L− p

]
+ I3 � 0. (27)

where

µ = max
x1,x2

{φ1(x)2 + φ2(x)2} =
27e−3

2b
, L =

1

c
[1 1]T .

Feasibility of (27) implies that GP,I(w → y) ≤ 1 for any
feasible solution P . By minimizing Tr(PW ) subject to (27)
we obtain:

E ‖y − ỹ‖2 ≤ inf
P

2Tr(PW ) < 1108.

Thus, the IMSG from w to y is less than
√

1108/2 ≈ 16.65,
that is, GI,I(w → y) < 16.65.

IV. CONCLUSIONS
We presented new results on contraction analysis of non-

linear systems with stochastic inputs based on a notion of
stochastic differential contraction which does not explicitly
require an exponential rate of decay on the distance be-
tween two trajectories. As a special case, we recover the
standard H2 analysis results for linear systems. This feature
is absent in previous approaches to contraction analysis of
nonlinear systems with stochastic inputs. This suggests that
the presented method can in general be less conservative and
provide an improvement over existing methods.
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