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Abstract— In order to study the impact of dynamic demand
response in the future smart grid, we examine in an abstract
framework, how a tradeoff between efficiency and risk arises
under different market architectures. We first examine the
system performance under non-cooperative and cooperative
market architectures. The statistics of the stationary aggregate
demand processes show that, although the non-cooperative load
scheduling scheme leads to an efficiency loss, the stationary
distribution of the corresponding aggregate demand process
has a smaller tail, resulting in less frequent aggregate demand
spikes. Cooperative dynamic demand response, on the other
hand, makes the market place more efficient at the cost
of increased risk of aggregate demand spikes. The market
architecture determines the locus of the system performance
with respect to the tradeoff curve. We also investigate how a
properly designed real-time electricity pricing mechanism can
help the system operator achieve a target tradeoff between
efficiency and risk in a non-cooperative market. We further
provide a convex characterization of the Pareto front of system
performance measures, which serves as a benchmark of the
tradeoffs for the system operator to evaluate the pricing rules.

I. INTRODUCTION

The distributed renewable energy sources pose new chal-
lenges for the design and operation of the future smart
grid. On the supply side, the intermittency of the renewable
sources introduces exogenous supply shocks. On the demand
side, one challenge is system modeling and system design
when large or perhaps small consumers may be able to
actively respond to the real-time prices or other incentive
signals [1], [2], [3]. A considerable amount of the consumer
response will take the form of scheduling flexible loads, for
example, electrical vehicle charging, building heating, and
industrial processing. Several recent paper have examined
optimization and control policies for scheduling such flexible
electric loads, either under the assumption that the prices
are exogenous, or that the players are small and therefore,
price taking [4], [5], [6], [7], [8]. In the cases where the
endogenously determined price is increasing in the instanta-
neous aggregate demand of finitely many agents, the problem
falls into the category of dynamic oligopolistic competition
[9]. The system model studied in this paper belongs to this
category.

In this work, we shall examine the market dynamics in
a dynamical system framework. Here, “dynamics” refers
to the property that the demand decisions of the agents
depend on the “state” of the system, whose evolution over
time is in turn, determined by the agents’ decisions. The
notion of “state” refers to the market configuration. This will

become more clear when precise definitions are given later
in the sequel. From the perspective of system operation, we
study the impact of the aggregate dynamic demand response
on electricity markets, measured by “efficiency” and “risk”.
We observe that on one hand, dynamic demand response
may largely smooth the aggregate demand process, thereby
improving the system efficiency. On the other hand, agent
interactions can generate aggregate demand spikes, which we
define as endogenous risk in the electricity markets. Such
exceedingly large demand / price spikes, introduce a level of
volatility that can not only cause serious economic damage,
but also undermine viability of electricity markets as a whole
[1], [10]. Note that, our notion of “endogenous risk” of
demand or price spikes is not the same as the financial risks
associated with the real-time price uncertainties [11], [12],
[13]. On the contrary, we examine how price volatility is
shaped by the demand response. Furthermore, these spikes
are endogenously created, and are therefore, distinctively
different from the predicted peak hour loading.

In a more general setting, load scheduling, i.e., agents with
coupled interests distributing their demand for a resource
over multiple periods in order to minimize the expected
cost of consumption, plays a crucial role in a wide array
of applications. Examples include load scheduling in cloud
computing under quality of service constraints [14], and
multi-period rebalancing of multiple portfolio accounts in
the presence of transaction costs [15]. In addition, many
engineering disciplines actually do share compatible, if not
identical, notions of the terms like “efficiency”, “robustness”,
and “risk”. So it is plausible that the messages in this study
can be carried over to other engineering applications. In
particular, for multi-agent systems, the mechanisms that can
channel or even amplify uncertainties in the environment, i.e.,
exogenous shocks, into endogenous risks within the systems
are still not well understood. Previous research efforts have
explored various possible origins of endogenous risk, for
example, failure of endogenizing other agents’ action [16]
and heterogeneous beliefs [17]. In our work, we provide an
alternative explanation through a comparative study, and posit
that they can arise from the nature of the system dynamics
and agent interactions even at a complete information rational
expectation equilibrium.

We consider a market where there are a large number
of competitive electricity suppliers, aggregated into one
representative supplier, and price anticipating self-interested
agents, which enter and exit the market following a random
process. The agents can model both consumers and the dis-



tributed renewable generators with potential load scheduling
and storage technologies. Each agent activates a job upon
arrival in the market which needs to be completed before his
deadline. The agents dynamically schedule their electricity
demand in reaction to real-time prices, which are set to be
the marginal cost of the supplier at each time slot. When the
agents schedule their load in a non-cooperative way, each
agent optimizes his own expected cost; when the agents
cooperate in the decision making process, the loads are
scheduled in a way to optimize aggregate expected cost of
all agents.

We observe that, when the agents schedule their loads in a
cooperative way, they are more aggressive in absorbing ex-
ogenous uncertainties. As a result, they produce an aggregate
demand process that is smoother on average and associated
with a higher market efficiency. However, the tradeoff is a
higher endogenous risk in terms of more aggregate demand
spikes. This observation is consistent with the “robust yet
fragile” property of complex systems, studied in [18], in the
sense that the dynamic demand response can make the market
place more robust to the relatively small and highly probable
disturbances, but fragile for a different property (aggregate
demand spikes) to certain less probable disturbances. The
market architecture determines the locus of the system per-
formance with respect to the tradeoff curve.

In [19], [20], [21], agent direct participation in the elec-
tricity market is modeled in a similar game theory based
approach; and in [22], [23], the authors examined the ap-
plication to electrical vehicle charging in a game theoretic
approach with rational agents. However, in all the above
works, the heterogeneous deadline constraints of individuals
are not explicitly considered. We identify that the hetero-
geneous deadline constraints, together with the dynamic
decision making process in response to the uncertainties, play
a critical role in generating the endogenous risk of aggregate
demand spikes. Therefore, the deadline constraints deserve a
closer examination as proposed in this paper.

The remainder of the paper unfolds as follows. In Section
II, we introduce the system model. In Section III, we focus
on a specific case for which analytical solutions are obtained,
and examine how various architectural properties affect the
efficiency-risk tradeoffs. The analysis of this special case
gives us insight on how to approximate the system by a more
tractable model. The approximation leads to a Linear Time
Invariant (LTI) system which yields qualitative messages
that are consistent with the exact analysis of the special
case. Proceeding with the approximated model, in Section
IV, we discuss how the system operator’s decision on the
pricing rule will affect agent load scheduling behavior in a
non-cooperative setup. In Section V, we provide a convex
characterization of the Pareto front of performance measures,
which dictates the fundamental tradeoff of the system with
load scheduling dynamics. We conclude the paper with
discussions on assumptions of the abstracted model and
future work in Section VII. Due to space limitations, we
only provide a sketch of the proofs in the appendix. Please
see [24] for the details and supplementary materials.

II. SYSTEM MODEL

In this section we introduce the system model consisting
of heterogeneous agents with deadline constraints, competi-
tive electricity suppliers, and the pricing scheme. We also
define the non-cooperative and cooperative market architec-
tures which define the nature of the interactions among the
agents. We model consumer participation in the future smart
grid, and focus on how the demand side of the wholesale
spot market react to the uncertainties, which are in the
form of unpredictable disturbances which force the system
to deviate from the planned ahead generation and demand
schedule. For the sake of analytical tractability, we chose an
abstracted modeling approach, while retaining the most es-
sential elements of electricity consumers’ response to prices,
namely the dynamic decision making process, heterogeneous
deadline constraints, and the load arrival uncertainties. This
abstract model fascilitates the main purpose of our analysis,
which is to provide high level intuition and help understand
important tradeoffs induced by the architectural properties of
the system. More discussion on the modeling approach is
included in Section VI.

II-A Agent Arrival Process

Agents in our model represent both consumers and the dis-
tributed renewable generations with potential load scheduling
and storage techniques, and they enter and exit the market
over time following a random process. The agent arrival
process is a discrete time random process with time intervals
indexed by t = 0, 1, 2, · · · . When an agent arrives at the
market, he activates a job that requires a certain amount
of electricity in order to be completed. The agent needs to
complete the job within a finite number of time intervals,
and leave the market at his deadline. We define the length of
time that an agent stays in the market to be his type, denoted
by l ∈ L = {1, · · · , L}. Note that type 1 agents include the
group of consumers with no real-time metering information
who do not respond to the real-time price information. We
assume that agents of type l arrive according to a Bernoulli
process {hl(t) ∈ {0, 1} : t ∈ Z}, with rate ql. Namely,
at each time slot, with probability ql there is a type l agent
arrival, which is independent of all other events. Upon arrival
at time t, the type l agent activates a job of workload dl(t),
which requires dl(t) units of electricity. We assume that
{dl(t) ∈ R : t ∈ Z} is a white process with distribution
Dl of mean µl = E[Dl] and variance σ2

l = Var[Dl]. Let the
L-dimensional column vectors h(t) = [hl(t)] ∈ {0, 1}L, and
d(t) = [dl(t)] ∈ RL denote the vector forms of arrival events
and the corresponding workloads. Moreover, we assume that
the agents have complete information about the market, and
form rational expectations [25] about the real-time prices and
the behavior of other agents.

II-B Real-time Electricity Pricing

We consider the case where the supply side consists of
a large number of competitive and homogeneous electricity
suppliers, which respond to the market prices as price takers
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in the same way. Therefore, we adopt the representative
agent paradigm [26]. It is thus, sufficient to consider a single
representative supplier, as the number of suppliers will be
irrelevant for characterizing the equilibrium. Note that this
is consistent with the paradigm of marginal cost pricing by
the ISOs if the producers submit their true cost function to
the ISO and follow the dispatch instructions. We assume
that the representative supplier incurs a quadratic production
cost of 1

2cV (t)2 at time t, where V (t) is the total electricity
generation, and c is a constant. Thus the marginal cost of
production is cV (t) and is increasing in the total supply. Let
U(t) denote the instantaneous aggregate electricity demand
from all agents in the market. At the equilibrium where
total supply equates total demand, i.e., V (t) = U(t), the
instantaneous electricity price p(t) equals the marginal cost
of production, namely p(t) = cU(t). To simplify the notation,
we let c = 1 throughout the rest of this paper.

We adopt a quadratic cost function for two reasons: firstly
it constitutes a second-order approximation to other types of
nonlinear cost functions, and secondly it captures the impor-
tant fact of increasing marginal cost. Finally, in electricity
markets, marginal cost pricing is a widely used mechanism
[27]. It is well known that in a static setup, when both the
suppliers and the consumers are competitive, marginal cost
pricing leads to social optimality.

II-C System State Evolution

At each time t, there can exist more than one agent of
each type, corresponding to agents that enter the market at
different times before t, and with different deadlines in time.
For example, there are at most (L+ 1− τ) agents who will
stay in the market for τ periods for all τ ∈ L. They correpond
to the type τ arrival at time t, the type (τ +1) arrival at time
(t−1), etc. We index the active agents in the market at time
t in the following way: a type l agent, which has τ time slots
before his deadline, is denoted by a pair (l, τ)t. According
the arrival process described in Section II-A, the pair (l, τ)t
may take value in the following ordered set:

C = {(1, 1), (2, 1), (3, 1) · · · ,(L, 1),

(2, 2), (3, 2), · · · ,(L, 2),

· · · ,(L,L)}.

Also, Dc = L(L+ 1)/2 denotes the cardinality of C.
Let u(l,τ)(t) ∈ R denote the instantaneous demand 1 from

agent (l, τ)t, with the vector form denoted by:

u(t) = [u(l,τ)(t) : (l, τ) ∈ C] ∈ RDc .

By default u(l,τ)(t) = 0 if there is no agent (l, τ)t at time t, in
other words hl(t + τ − l) = 0. The instantaneous aggregate

1Note that we allow the load realizations as well as the instantaneous
demand from the agents to be negative, which can model the situation where
distributed agents are equipped with renewable generations or storage units,
and are able to sell energy back to the power grid. We also ran extensive
numerical simulations for the scenario where there is a lower bound on
instantaneous demand or supply, and in all of our the simulations the main
results hold qualitatively.

demand U(t) =
∑

(l,τ)∈C u(l,τ)(t) = 1′u(t), where 1 is a
Dc-dimensional column vector of all ones.

The aggregate demand process is determined by agents
scheduling their load in response to the real-time prices as
well as to the system state information. In our setup, agents
represent significant market participants including the utility
companies, load aggregators, or micro grids, each of which
may consist of many small end consumers. Therefore we
assume that they are price anticipating and schedule their
loads strategically.

Similarly, we define the backlog state x(t) and the exis-
tence state o(t) as follows:

x(t) = [x(l,τ)(t) : (l, τ) ∈ C] ∈ RDc , (1)

o(t) = [o(l,τ)(t) : (l, τ) ∈ C] ∈ {0, 1}Dc , (2)

where element x(l,τ)(t) denotes agent (l, τ)t’s unsatisfied
load at time t, and element o(l,τ)(t) = 1 if and only if there
is an arrival of type l agent at time (t+ τ − l).

In summary, the system state at time t is defined to be
s(t) = (x(t),o(t)) ∈ S, and the state space S is specified
as:

S = RDc × {0, 1}Dc . (3)

The system state s(t) is updated after the realization of h(t)
and d(t) at the beginning of each time slot t as follows:

x(t+ 1) = R1(x(t)− u(t)) + R2d(t), (4)
o(t+ 1) = R1o(t) + R2h(t), (5)

where R1 and R2 are some constant matrices2.
We assume that the state information is available to all

agents in the market. We acknowledge that the assumption
of complete and perfect information is very strong, especially
when the number of agents is large. Information structure,
though an important issue in dynamic games, is not the focus
of this paper, as the identified mechanism that produces en-
dogenous risk of spikes also exists in incomplete information
models. This simplification can serve as a benchmark for
incomplete information models.

In summary, Fig. 1 illustrates the model of the two-sided
electricity market between the competitive supplier and the
agents which dynamically schedule their loads over time.

II-D Non-cooperative Market Architecture

With full information, agent (l, τ)t’s decision about his
instantaneous demand u(l,τ)(t) is a function of the system
state s(t), and the function form is determined by the nature
of the interactions among the agents.

2R1 has dimension Dc ×Dc and R2 Dc ×L. These constant matrices
are specified as follows:

R1

(
(k − 1)(L+

2− k

2
) + i+ 1, k(L+

1− k

2
) + i

)
= 1,

for all 1 ≤ i ≤ L− k and 1 ≤ k ≤ L− 1;

R2

(
(l− 1)(L+

2− l

2
) + 1, l

)
= 1,

for all 1 ≤ l ≤ L.
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(a) (b)

Fig. 1: Electricity market place with agents and the competitive supplier.

We define the non-cooperative market architecture to be the
setup where there is no coordination among the agents. Under
the assumption that the agents do not directly derive utility
from electricity usage, their only objective is to minimize
the expected procurement cost of electricity in order to
complete the workload before the deadlines. Note that our
framework can also be extended to cases where agents value
their consumptions. In Section V we shall relax the deadline
constraints and model the mismatch between the required
workload and the completed load before deadline as disutility
of the agents.

More specifically, a type l agent who arrives at time t
dynamically optimizes his demand schedule

{u(l,l−i)(t+ i) : i = 0, 1, · · · , l − 1}

to minimize his expected payment

E[

l−1∑
i=0

p(t+ i)u(l,l−i)(t+ i)].

Considering the cost coupling through endogenous pricing
as well as the deadline constraints over time, we formulate
the agent decision making as a stochastic dynamic game,
specified as follows:

• Players: Over infinite time horizon, the players are
indexed by {(l, τ)t : t ∈ Z, (l, τ) ∈ C} according to
their type and arrival time in the market.

• State Space: The state space is given by S defined in
(3).

• Action Set: The action set is denoted by A. The action

set of player (l, τ)t at time t in state s is given by:

A(l,τ)(s) =

 0, if o(l,τ) = 0
x(l,τ), if o(l,τ) = 1 and τ = 1
R, otherwise

. (6)

• Transition Probability: For each state s and action
vector u ∈

∏
(l,τ)A(l,τ)(s), the transition probability

P(s′|s,u) follows the system state evolution rule spec-
ified in (4), (5) and the agent arrival process described
in II-A.

We shall focus on Markov Perfect Equilibrium (MPE) [28],
[9] throughout our discussion. This equilibrium concept
refers to a subgame perfect equilibrium of the stochastic
dynamic game where the strategies only depend on the
current system state. Compared to other standard equilibrium
concepts such as Nash equilibrium (NE) and subgame perfect
equilibrium (SPE), MPE is a more suitable equilibrium type
to consider here. First, subgame perfection refines NE in
the dynamic decision making setup. Second, when an agent
makes a decision of instantaneous electricity demand, the
load consumption trajectory in the past does not matter to
him, rather he only focuses on the total amount of unfinished
load he needs to fulfill before his departure from the market.
This justifies the Markov property of MPE. The Markov
strategy is defined as a function u : S → A. Note that as a
result of the i.i.d. arrival process, all agents of the same type
have the same cost structure. We shall focus on the symmetric
equilibria where for every (l, τ) ∈ C, the demand u(l,τ)(t)
is a function of the system state s(t), and that function is
time invariant. Namely, if s(t) = s(t′), agent (l, τ)t and
(l, τ)t′ will reach the same decision u(l,τ)(t) = u(l,τ)(t

′).
The symmetric MPE is defined below.
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Definition 1 ( Symmetric MPE ): A strategy profile

unc = {unc(l,τ)(s) : (l, τ) ∈ C, s ∈ S}

is defined to be a Symmetric MPE strategy, if the following
fixed point equations are satisfied for agent (l, τ)t, for any
(l, τ) ∈ C, for any time t, and for any system states s(t) ∈ S:

unc(l,τ)(s(t)) = arg min
u

E
[
p(t)u+

τ−1∑
i=1

p(t+ i)unc(l,τ−i)(s(t+ i))
∣∣∣s(t)] (7)

subject to:
l−1∑
i=0

unc(l,l−i)(s(t+ i)) = dl(t), ∀t, l,

p(t) = u+
∑

(l′,τ ′)∈C,(l′,τ ′) 6=(l,τ)

unc(l′,τ ′)(s(t)),

p(t+ i) =
∑

(l′,τ ′)∈C

unc(l′,τ ′)(s(t+ i)), ∀i ≥ 1,

where s(t) evolves according to (4), (5).

II-E Cooperative Market Architecture
We define the cooperative market architecture to be the

setup where the agents coordinate their decisions of load
scheduling u(s(t)) to minimize the expected total cost
E[
∑
t p(t)U(t)]. This setup corresponds to the scenario

where the agents delegate the task of load scheduling to a sin-
gle load aggregator that schedules the loads in a centralized
way on behalf of all the agents.

Definition 2 (Optimal Stationary Cooperative Strategy):
A strategy profile uc = {uc(l,τ))(s) : (l, τ) ∈ C, s ∈ S} is
defined to be an optimal stationary cooperative strategy if
uc(s) =

[
uc(l,τ)(s) : (l, τ) ∈ C

]
solves the following fixed

point equations for any system states s(t) ∈ S:

uc(s(t)) = arg min
uc=
[
u(l,τ):(l,τ)∈C

]E[ ∑
(l,τ)∈C

p(t)u(l,τ)

+

T∑
t′=t+1

∑
(l,τ)∈C

p(t+ i)uc(l,τ)(s(t
′))
∣∣∣s(t)], (8)

subject to:
l−1∑
i=0

uc(l,l−i)(s(t+ i)) = dl(t), ∀t, l,

p(t) =
∑

(l,τ)∈C

u(l,τ),

p(t+ i) =
∑

(l,τ)∈C

uc(l,τ)(s(t+ i)), ∀i ≥ 1,

where s(t) evolves according to (4), (5).
The above fixed point equation is derived from an infinite
horizon average cost MDP, and the associated Bellman
equation can be solved via standard value iteration or policy
iteration.

II-F Welfare Metrics
Different market architectures induce different agent de-

cisions of load scheduling, and different aggregate demand

processes {U(t) : t ∈ Z}. We focus on two measures of
the system performance: market efficiency and the risk of
aggregate demand spikes. Market efficiency is defined to be
the expected sum of the electricity provider’s surplus Wp and
the agents’ surplus Wa:

W = E[p(t)U(t)− 1

2
U(t)2]︸ ︷︷ ︸

Wp

+E[−p(t)U(t)]︸ ︷︷ ︸
Wa

= −1

2
E[U(t)2],

(9)

where the second inequality is the result of marginal cost
pricing p(t) = U(t). Moreover, we have that W = Wa/2.
Therefore, market efficiency is decreasing in E[U(t)2] as
well as V ar[U(t)2], the variance of the aggregate demand
process. By definition, the optimal stationary cooperative
strategy maximizes the agents’ surplus W c

a , and it also leads
to the highest system efficiency. Let Wnc

a denote the agents’
surplus achieved by the non-cooperative equilibrium strategy.
The agents’ surplus loss (W c

a−Wnc
a ) is commonly known as

the “price of anarchy” due to the strategic behavior of non-
cooperative agents when payoff externalities exist. In this
setup, it also leads to a proportional system efficiency gap
(W c −Wnc).

We define risk to be the tail probability of the stationary
aggregate demand process:

R = Pr(U(t) > M), (10)

for some positive large constant M . As a result of marginal
cost pricing and increasing marginal cost, risk also captures
the tendency for the spot price or aggregate demand to
spike3.

III. TRADEOFF ANALYSIS FOR L = 2 CASE

III-A Non-cooperative Equilibrium and Optimal Cooperative
Strategy

In general, there are no closed form solutions to either (7)
or (8), and numerical solutions involve exponential complex-
ity. In this section, we analyze the case with the number
of types L is equal to 2. Type 1 agents have inflexible
loads that must be satisfied upon arrival, and type 2 agents
have the flexibility to split their workload between two
consecutive time periods. In this case, both the equilibrium
strategy and the optimal cooperative strategy can be found
explicitly, and the analysis can shed light on understanding
the agent behavior and the resulting system dynamics induced
by different market architectures in the general setup.

At any time t, there are at most 3 agents in the market,
which are indexed as: (1, 1)t, (2, 1)t, and (2, 2)t. Among
them, the instantaneous demands of agents (1, 1)t and (2, 1)t
are given by u(1,1)(s) = x(1,1) and u(2,1)(s) = x(2,1)
due to the deadline constraints. Only agent (2, 2)t needs
to make a nontrivial decision to schedule his workload
(u(2,2)(t), u(2,1)(t)), and for him the sufficient statistics of
the system state is (x(t), d2(t)), where x(t) = x(1,1)(t) +

3Note that since the system dynamics is stationary, the expected long-term
averages converge to the corresponding expectations for each time slot.

5



x(2,1)(t) is defined as the aggregate backlog state, and d2(t)
is his total workload. We define a linear strategy as a strategy
profile u(s) with u(1,1)(s) = x(1,1), u(2,1)(s) = x(2,1), and
u(2,2)(s) = u(x, d2) = −ax+ bd2 + g for some constants a,
b and g.

Proposition 1 (Existence of linear symmetric MPE):
Under the non-cooperative market architecture, for L = 2,
there exists a linear symmetric MPE with the linear strategy
unc(x, d2) given by:

unc(x, d2) =− 1

2(1 +
√

1− q2/2)︸ ︷︷ ︸
anc

x+
1

1 + 1/
√

1− q2/2︸ ︷︷ ︸
bnc

d2

+
q1µ1 + q2µ2

1

1+
√

1−q2/2

2(1 +
√

1− q2/2)︸ ︷︷ ︸
gnc

. (11)

Proposition 2 (Existence of optimal cooperative strategy):
Under the cooperative market architecture, for L = 2, there
exists a linear optimal stationary cooperative load scheduling
strategy uc(x, d2) given by:

uc(x, d2) =− 1

1 +
√

1− q2︸ ︷︷ ︸
ac

x+
1

1 + 1/
√

1− q2︸ ︷︷ ︸
bc

d2

+
q1µ1 + q2µ2

1
1+
√
1−q2

1 +
√

1− q2︸ ︷︷ ︸
gc

. (12)

Remark 1 (Interpretation of the coefficients): For a linear
strategy adopted by type 2 agents, the coefficient a can be
interpreted as the sensitivity to the aggregate backlog x(t).
A larger a means that the strategy is more aggresive in
absorbing the fluctuation of inflexible loads. Note that both
anc and ac are increasing in q2. Intuitively, with a higher
type 2 arrival rate q2, each type 2 agent is more aggresive
in responding to x(t) at their first period, anticipating that
in the next time slot another type 2 agent will arrive and
respond to x(t + 1) in a similar aggresive way. Also note
that for any arrival rate q2, anc < ac always holds, and
ac ∈ [0.5, 1], anc ∈ [0.25, 0.2929], which means that type
2 agents always respond less aggresively to the aggregate
backlog x(t) under the non-cooperative market architecuture.
This can be understood as a result of their strategic behavior
at equilibrium.

III-B System Performance

Given a linear strategy with u(x, d2) = −ax + bd2 + g,
we have the state evolution dynamics:

x(t+ 1) = o(1,1)(t+ 1)d1(t+ 1) + o(2,2)(t)
(
d2(t)− u(x(t), d2(t))

)
,

which determines the stationary distribution of the aggraegate
backlog / aggregate demand process.

Assume that all type 2 agents adopt the linear strategy
u(x, d2) = −ax+bd2+g, market efficiency, as defined in (9)
can be evaluated explicitly. In particular, with linear strategies
unc(·, ·) and uc(·, ·), the market efficiency Wnc and W c, as
well as the difference ∆ = W c −Wnc can be obtained in

closed form (not included here for brevity). Furthermore, ∆
is positive and increasing in q2, namely, the higher q2 is,
the larger efficiency loss of non-cooperative scheme will be.
This observation suggests that the efficiency gap between
cooperative and non-cooperative load scheduling scheme
even widens as the arrival rate of flexible loads increases.

However, the stationary distribution of the aggregate de-
mand process under the cooperative market architecture has
a larger right tail, which corresponds to more aggregate de-
mand spikes. An upper bound of this higher risk is quantified
in the next proposition:

Proposition 3 (Upper bound on the risk R): Suppose
that the workloads Di have Normal distributions N (µi, σ

2
i )

for i = 1, 2. For the stationary aggregate backlog distribution
X induced by a linear strategy u(x, d2) = −ax + bd2 + g
(a ∈ (0, 1)), the probability of aggregate backlog exceeding
M is upper bounded as follows:

Pr(x(t) > M) ≤ 1√
2πm1

e−
m2

1
2 ,

where

m1 =
M − µ1+(1−b)µ2−g

1−a√
σ2
1+(1−b)2σ2

2

1−a2

.

Moreover, if the following condition is satisfied:

1− (1− a)2

1− a2
>

b2

σ2
1/σ

2
2 + (1− b)2

, (13)

for sufficiently large constant M , the risk of aggregate
backlog exceeding M is upper bounded as follows:

R = Pr(U(t) > M) ≤ qPr(x(t) ≥M) + o(e−M ). (14)
The interpretation of condition (13) is that when the variance
of flexible load realizations is sufficiently lower than that
of the inflexible load realizations, and when the coefficient
a is sufficiently larger than the coefficient b, the aggregate
demand spikes are mostly contributed by the high aggregate
backlogs. It is easy to verify that the stationary distribution
of x(t) induced by uc(·, ·) has a larger mean and a larger
variance than that induced by unc(·, ·). In other words,
the state of the aggregate backlog is more volatile in the
cooperative scheme, which can be associated with a higher
upper bound of the risk under certain condition.

III-C Numerical Results

In this part, we will demonstrate the efficiency-risk trade-
offs via numerical experiments. First we compare the sta-
tionary distribution of the aggregate demand process induced
by four different linear strategies. In addition to uc(·, ·) and
unc(·, ·), we include the “naive load scheduling” scheme
unaive(x, d2) = d2/2, and the “no load scheduling” scheme
uno(x, d2) = d2 for comparison.

Fig. 2a shows the efficiency performance, which is nega-
tively proportional to the second order moment of the aggre-
gate demand process, under the four strategies. We observe
that for all arrival rate q2, cooperative load scheduling is the
most efficient, and the efficiency loss of the non-cooperative
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Fig. 2: Efficiency-risk tradeoff for L = 2

scheme when compared to the cooperative scheme increases
in q2. This suggests that the cooperative load scheduling
becomes more effective in terms of attenuating the aggregate
demand variance when the arrival rate of flexible loads
increases.

Fig. 2b compares the risk of spikes across the four strate-
gies. The 0.95-quantile of the stationary distribution of the
aggregate demand process is plotted for each strategy. A
higher 0.95-quantile is associated with a higher risk. We
observe that for all arrival rates, the non-cooperative scheme
achieves the lowest risk. Also, as q2 increases, the risk
increases most rapidly with the cooperative scheme, while
the other three load scheduling schemes only increase slowly.

Fig. 3 shows the sample paths of the aggregate demand
processes. In Fig. 3a, we observe that at a smaller time
scale, the cooperative scheme can better smooth the aggregate
demand process, which is consistent with the lower aggregate
demand variance. However in Fig. 3b, at a larger time scale,
we can identify more demand spikes produced endogenously
by the cooperative load scheduling scheme, corresponding to
the higher risk of aggregate demand spikes in the cooperative
scheme.

Remark 2 (Understanding when spikes occur): On one
hand, the aggregate demand spikes can happen when the
workload realization d(t) is extremely high. We attribute this
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Fig. 3: Sample paths of the aggregate demand process

type of spikes to exogenous shocks as they correspond to rare
events associated with the uncertainties in the environment. If
the support of Dl is bounded, for sufficiently large constant
M the spikes from exogenous shocks are negligible.
On the other hand, an aggregate spike can be produced
endogenously when a high aggregate backlog is built up
during load scheduling and the type 2 agent does not arrive
at that time slot. The lack of flexibility to further postpone
the backlogged loads translates the aggregate backlog at
the deadline into an aggregate demand spike. This intuition
is confirmed by observing the conditional distributions of
aggregate demand process in Fig. 4. We can see that the
tail of the aggregate demand distribution is significantly
larger, conditioned on the non-arrival of type 2 agent, and
is also significantly larger, conditioned on the event that the
aggregate backlog is high. This provides intuition to the
high efficiency - high risk tradeoff of the cooperative load
scheduling scheme: the more efficient a load scheduling
strategy is, the more intense the backlog usage will be,
and the resulting high backlog volatility leads to aggregate
demand spikes.

IV. GENERAL L ANALYSIS: PRICING

In general, as illustrated in Figure 5a, the agent load
scheduling can be viewed as a full state feedback controller,
the feedback control signal u(t) affects the system state
evolution according to (4) and (5), and the system output
is the aggregate demand process. As a result of the Bernoulli
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Fig. 4: Conditional distributions (in log scale) of the aggre-
gate demand process reveal when aggregate demand spikes
happen, for the case L = 2.

arrival processes, the agent load scheduling forms a time-
invariant feedback controller that is nonlinear. Instead of
analyzing the nonlinear dynamics directly, we introduce
two key approximations to the system dynamics along with
surrogate performance measures. The approximated system
resembles the original system in the most essential ways and
facilitates the analysis.

Approximation 1: The agent arrival rate q = 1, namely
agents of all types arrive at every period, so that h(t) = 1
and o(t) = 1 for all t.

Approximation 2: The second moment E[z2(t)2] of the
aggregate backlog process z2(t) = e′x(t) is used as a
substitute measure of risk.

The intuition behind the two approximations is as follows.
We focus on the system dynamics with high arrival rate, i.e.,
q is close to 1. According to our observations in Remark
2, if flexible loads continue to arrive, spikes are unlikely to
happen, however, with small probability (1−

∏L
i=1 qi) when

there is a non-arrival of flexible loads, a high backlog will be
turned into an aggregate demand spike. We also normalize
the load arrival process so that the average load realization µ,
the average backlog state E[x(t)], and the average demand
E[u(t)], are all zero vectors, and we assume the load arrival
process {d(t) : t ∈ Z} is a white Gaussian process.

(a) Original system with nonlinear
dynamics

(b) LTI formulation with deadline
constraints

(c) LTI formulation with disutility
of load mismatch upon deadline

Fig. 5: System diagrams

In summary, the system diagram of the approximated
system with linear dynamics is shown in Fig. 5b. Ideally,
in order to achieve a high efficiency and a low risk, agent
load scheduling should serve to suppress the volatility of both
aggregate demand state and backlog state. The performance
measures of efficiency and risk are therefore approximated
by the second moments of the two outputs z1(t) = e′u(t)
and z2(t) = e′x(t).

Many of the market architectural properties, for example
the degree of cooperation and risk sensitivity of the agents,
are usually fixed, while the system operator has the freedom
to design the pricing rule to elicit the desired agent behavior
and tradeoffs. Within the LTI framework, we focus on the
non-cooperative setup and consider the system operator’s
problem of choosing a static linear pricing rule parameterized
by coefficients q1 and q2 as follows:

p(t) = q′1x(t) + q′2u(t). (15)

The instantaneous demand decisions are made by individual
agents in a non-cooperative way. In the linear symmetric
MPE, assuming that the load scheduling strategy exists, and
it is in the following form:

u∗(t) = F∗x(t), (16)
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we denote the (l, τ)-th row of F∗ by F∗(l,τ) ∈ RDc . Applying
the one-shot deviation principle [29] at the equilibrium, we
obtain the optimal load scheduling decision u∗(l,τ)(t) for any
(l, τ) ∈ C as follows:

if τ = 1, u∗(l,τ)(t) = e(l,τ)x(t);
if τ > 1,

u∗(l,τ)(t) = arg min
u∈R
{p(t)u+ E[

τ−1∑
k=1

p(t+ k)F∗(l,τ−k)x(t+ k)]}

(17)
subject to: u(t) = F∗x(t) + e(l,τ)(u− F∗(l,τ)x(t)),

u(t+ k) = F∗x(t+ k), ∀k > 0,

p(i) = q′1x(i) + q′2u(i), ∀i,
x(i+ 1) = R1x(i) + R2d(i)−R1u(i), ∀i,

where e(l,τ) is a Dc dimensional vector with the only non-
zero element being 1 at the (l, τ)-th position. Moreover, at
the symmetric equilibrium the expected strategy adopted by
all other agents should be consistent with the best response
strategy of a particular agent. A direct application of the
principle of optimality to (17) leads to:

F∗ = f(q1,q2)(F
∗). (18)

For given coefficients q1,q2, the (l, τ)-th row of the mapping
f(q1,q2) : RDc×Dc → RDc×Dc is specified in (19). Obtaining
the conditions on the parameters which guarantee the exis-
tence of a fixed point solution to the nonlinear equation (19)
is a challenging task. However, the equation provides a set of
necessary conditions for the equilibrium strategies to satisfy.

Proposition 4 (System operator’s problem): Assume that
the social welfare can be modeled as a weighted sum of
efficiency and risk as follows:

J(E[z1(t)2],E[z2(t)2]) = −(α1E[z1(t)2] + α2E[z2(t)2]).

The system operator optimizes the parameters of the pricing
rule as defined in (15) to maximizes the social welfare.
The optimal solution (q∗1,q

∗
2) is a solution to the following

optimization problem:

min
q1,q2∈RDc

Q,F∈RDc×Dc

α1e
′F(q1,q2)QF(q1,q2)e + α2e

′Qe (19)

subject to: R1(I− F)Q(I− F′)R′1 −Q + R2R
′
2 = 0,

F = f(q1,q2)(F),

where f(q1,q2) is the mapping defined in (19).

V. FUNDAMENTAL TRADEOFF

A more fundamental question that we attempt to address
is that in face of exogenous uncertainties, to what extent
is system volatility inevitable and to what extent it can
be controlled. More specifically, is there a limit of the
feedback control, in the form of load scheduling, to achieve
the dual goals of increasing market efficiency and reducing
endogenous risk? We show that for a broad class of load
scheduling strategies, the exogenous randomness cannot be

completely eliminated, and the dual goals of suppressing the
second moments of the two processes z1(t) and z2(t) cannot
be achieved simultaneously.

A load scheduling strategy is defined to be Pareto optimal
if there does not exist any other strategy that makes the vari-
ance of z1(t) smaller without making the variance of z2(t)
larger, and a pair (E[z1(t)2],E[z2(t)2]) locates on the Pareto
front if it is achieved by a Pareto optimal strategy. Unless it
trivially includes the point (0, 0), the Pareto front dictates the
limit of the system performances with a downward sloping
tradeoff curve between efficiency and risk. Also, note that the
concept of Pareto optimal load scheduling strategy does not
rely on market architecture specifications, in the sense that
the system performance achievable under any specific market
architecture cannot outperform the Pareto front. The Pareto
front thus serves as a benchmark to measure the welfare loss
between the optimal strategies and a load scheduling strategy
induced by a specific market architecture.

We introduce the third approximation, with which the
Pareto front can be characterized by solving a standard Linear
Quadratic (LQ) optimization problem [30], [31].

Approximation 3: The deadline constraints are relaxed.
Instead of requiring that all agents fulfill their backlogged
load when they exit the market, we track the total load
mismatch upon their deadlines: z3(t) = e′L(x(t) − u(t)),
where eL is a Dc-dimensional column vector with the first
L elements being ones and all others zero. Agent disutility of
the load mismatch upon deadline is modeled by the variance
of the load mismatch E[z3(t)2], and is defined to be the third
performance measure.

With Approximation 1, 2 and 3, the system diagram with
the outputs z(t) = [z1(t), z2(t), z3(t)] is shown in Fig. 5c.
We generalize the tradeoff between efficiency and risk to a
three-way tradeoff among efficiency, risk, and load mismatch
upon deadline, with the three-way Pareto optimal strategies
and the three-way Pareto front similarly defined. The problem
of characterizing the Pareto front can be cast into an LQ
optimization problem with an unconstrained feedback con-
troller. We follow the standard multi-objective optimization
technique to scalarize the objective. Consider the weighted
output process:

zα(t) = [α1z1(t), α2z2(t), α3z3(t)],

where αi > 0, for i = 1, 2, 3, and α2
1+α2

2+α2
3 = 1. A Pareto

optimal load scheduling strategy minimizes the H2 system
norm [30] for a given weight α = (α1, α2, α3):

min
{u(t):t∈Z}

‖zα‖22 (20)

subject to: x(t+ 1) = R1(x(t)− u(t)) + R2d(t)

Proposition 5 (Three-way Pareto front): 1) For
given non-negative weight α = (α1, α2, α3), the
corresponding Pareto optimal load scheduling strategy
is static and linear in the system state x(t) as follows:

u(t) = F∗αx(t).

where F∗α = Q∗P∗−1, and (Q∗,P∗) is the unique

9



f(q1,q2)(F)(l,τ) =


e′(l,τ), if τ = 1,

e′(l,τ)R
′
1A(l,τ)

(
R1(I−F)+R1e(l,τ)F(l,τ)

)
−
(
q′1+q′2(F−e(l,τ)F(l,τ))

)
e′
(l,τ)

R′1A(l,τ)R1e(l,τ)+2e′
(l,τ)

q2
, if τ > 1,

(19)

where A(l,τ) =

τ−1∑
k=1

((
R1(I− F)

)k−1)′(
(q1 + F′q2)F(l,τ−k) + F′(l,τ−k)(q

′
1 + q′2F)

)((
R1(I− F)

)k−1)
.

solution to the following convex optimization problem:

min
Q,P∈RDc×Dc ,M∈R3×3

ρ

subject to: Q > 0,

Trace(M) ≤ ρ,[
Q (R1Q−R1P)

′

(R1Q−R1P) Q−R2R
′
2

]
> 0,[

Q (C1Q + D12P)
′

(C1Q + D12P) M

]
> 0.

where

C1 = [0 α2e α3eL]′, D12 = [α1e 0 − α3eL]′.

2) Given a matrix F such that the feedback rule u(t) =
Fx(t) stabilizes the system, the H2 system norm of the
three performance measures is given by:

‖z1‖22 = e′FQFF
′
e, ‖z2‖22 = e′QFe,

‖z3‖22 = (e′ − e′LF)QF (e′ − e′LF)′,

where QF is the controllability Gramian given by
solving the following equation:

R1(I− F)QF (I− F′)R′1 −QF + R2R
′
2 = 0.

With different parameters of α = (α1, α2, α3), different
Pareto optimal solutions are produced, and we can trace out
the Pareto front. In particular, the curve when restricting the
three-way Pareto front to the plane of ‖z3(t)‖22 = ε for ε� 1
(α3/α1 � 1 and α3/α2 � 1) approaches the efficiency-risk
tradeoff curve with enforced deadline constraints. The second
part of Proposition 5 provides a way to evaluate the system
performance for any linear load scheduling strategy.

As an example, in Fig. 6a, we plot the Pareto front for
the case with L = 5 to visualize the three-way tradeoff
among the three system performance measures. In Fig. 6b,
we observe that as we loosen the constraint on load mismatch
upon deadline, namely with a larger β3 in the constraint
‖z3(t)‖22 ≤ β3, the two-way Pareto front of efficiency and
risk shifts towards the origin. This inward shifting corre-
sponds to a Pareto improvement as the volatility of both
aggregate demand and aggregate backlog are reduced.

VI. DISCUSSION

VI-A Modeling

In this section we discuss the rationale behind the choice
of the abstracted model adopted in this paper and justify the
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Fig. 6: Three way tradeoff, for the case L = 5.

assumptions.
First, we focus on the demand side of the wholesale spot

market, where the participants are the utility companies, load
aggregators, or micro grids, each of which may consist of
many small end consumers. Therefore, it is valid to assume
that the agents are price anticipating and make strategic
decisions. Second, we aim to capture the uncertainties in the
spot market, in the form of unpredictable disturbances which
force the system to deviate from the planned ahead generation
and demand schedule. Therefore, even though at a much
slower time scale, the daily base load profile is highly time
dependent, it is still reasonable to impose the time invariant
assumption on the agent arrival random process and the load
realizations, which correspond to the spot market time scale
disturbances.
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Finally, it is not the purpose of our paper to propose a de-
sign framework or a pricing scheme that can be immediately
matched to the demand response models in the field. Instead,
our major contribution is twofold: first, we propose the
abstracted model that captures the most important elements
of dynamic demand response; secondly, we investigate the
model and deliver the message of efficiency-risk tradeoff,
which is an ignored tradeoff that has not been discussed in
the literature.

In the model setup, we only include the elements which
are essential to illustrate the corresponding efficiency-risk
tradeoffs, namely the agent dynamic decision making
process, the heterogeneous deadline constraints, and the
load arrival uncertainties. These elements fundamentally
shape the statistical characteristics of the aggregate demand
process. With this modeling approach and the semi-analytic
solutions, one is able to see the impact of the most important
parameters more transparently. For example how the load
arrival frequency q and the load realization d affect demand
decisions in (11) - (12), and how the resulting agent behavior
affect the system performance in Section III-B. Incorporating
more details of the power system and electricity market in the
modeling increases the dimension of the model parameters,
and will likely leave us with only numerical analysis and
simulations. Although it is possible to observe the tradeoff
through extensive simulation, one might also easily miss
the phenomenon. Moreover, as long as the three essential
modeling elements are preserved qualitatively, we believe
that the main messages will still hold.

VI-B Future work
We propose three main directions for future research. First,

as discussed above, it is impossible to validate the assump-
tions of the abstracted model with actual load and metering
data; however, it is possible to validate the findings and the
implications of our analysis against actual data. Systematic
and rigorous validation of the results with empirical data is
an important direction for further research.

Second, in our analysis we have been maintaining the
complete and perfect information assumption. However, the
state information may be difficult to obtain in practice. One
important research direction is to relax the complete informa-
tion assumption, examine how agent behavior is shaped by
the information structure, and study the corresponding impact
on the performance of dynamic demand response, as well as
on the efficiency-risk tradeoffs.

Third, in the electricity market, there exist hierarchical
organizations and finer structures of cooperation, ranging
from large load aggregators to the many end consumers.
Adapting the proposed generic framework to accommodate
such hierarchical structures, and examining the impact of the
hierarchical aspect of market architecture on the tradeoffs is
another interesting research direction.

VII. CONCLUSION

In this paper, we proposed a framework to examine the
welfare impacts of dynamic demand response under dif-

ferent market architectures. We examined the efficiency-
risk tradeoff rooted at the market architectural properties,
and characterized the Pareto optimal front. Aside from
its academic value, we believe that a better and deeper
understanding of such tradeoffs will be helpful to system
operators and regulatory agencies in designing the system
architecture and operational policies.

APPENDIX

Due to space limitations, we only provide a sketch of the
proofs in the appendix. Interested readers please see [24] for
the details and supplementary materials.

Proof 1 (Proposition 1): For L = 2, under the non-
cooperative market architecture, the equilibrium strategy
unc(x, d2) is characterized by the solution to the following
fixed point equation:

unc(x(t), d2(t)) = arg min
u

{
u(u+ x(t)) + E

[
(d2(t)− u)

(
x(t+ 1) + h2(t+ 1)unc(x(t+ 1), d2(t+ 1))

)∣∣∣x(t), d2(t)
]}
,

(21)

where x(t+ 1) = d1(t+ 1) + (d2(t)−u). The best response
strategy of any agent (2, 2)t to the conjectured linear strategy
of all other agents is also linear, and the fixed point equation
pins down the MPE.

Proof 2 (Proposition 2): For L = 2, under the coopera-
tive market architecture, the optimal stationary cooperative
strategy can also be obtained as a closed form solution of
the following Belllman equation with value function V c(x)
and average cost per period λc:

λc + V c(x) =(1− q)
(
x2 + Ed1

[
V c(d1)

])
+ qEd1,d2

[
min
u

{
(x+ u)2 + V c(d2 − u+ d1)

}]
(22)

The value function of the corresponding Bellman equation is
of quadratic form, and first order condition gives the optimal
policy in linear form.

Proof 3 (Proposition 3): With Bernoulli arrival processes,
the stationary distribution of x(t) is a weighted sum of many
Gaussian variables, and the sum of weights is one. The upper
bound of Pr(x(t) > M) can be obtained by the Gaussian
variable with the highest mean and variance in the limit.

Proof 4 (Proposition 4): Since d(t) is white Gaussian
process, solving the problem of the utility optimization of
the system operator is equivalent to minimizing the system
H2 norm, under the agents rationality constraint, which is
specified by (18).

Proof 5 (Proposition 5): Following an approach of chang-
ing of variables similar to that in [30], the optimization
problem in (20) can be convexified into a standard linear
matrix inequality (LMI) [32] problem.
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