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The primary concerns of this paper are twofold: understanding the value of storage in the presence of
ramp constraints and exogenous energy prices, and understanding the implications of the associated
optimal storage management policy for qualitative and quantitative characteristics of storage response
to real-time prices. The optimal policy, along with the associated finite-horizon time-averaged value of
storage, are analytically characterized in this paper. An analytical upper bound on the infinite-horizon
time-averaged value of storage is also derived. This bound is valid for any achievable realization of prices
when the support of the distribution is fixed, and highlights the dependence of the value of storage on
ramp constraints and storage capacity. It is shown that while the value of storage is a non-decreasing
function of price volatility, due to the finite ramp rate, the value of storage saturates quickly as the capac-
ity increases, regardless of volatility. To study the implications of the optimal policy, computational
experiments are presented that suggest optimal utilization of storage can, in expectation, induce a con-
siderable amount of price elasticity near the average price. Then, a computational framework is presented
for characterization of the behavior of storage as a function of price and the state of charge, which illus-
trates a steep buy/sell phase transition in the price-state plane.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The growing demand for electricity and the urge to reduce
greenhouse emissions promote large-scale integration of renew-
able energy sources, as well as storage and other demand-side
management techniques (see [1] for a detailed discussion) to im-
prove energy efficiency in the future grid. However, renewable en-
ergy sources are highly uncertain and intermittent. While energy
storage technologies can help mitigate the intermittency and nar-
row the gap between generation from renewable resources and
consumption, they may also add to the uncertainty in the system
since the optimal response of storage to prices is a complicated
function of both price and the amount of stored energy. Modeling
and understanding the behavior of storage in response to real-time
market prices is therefore critical for reliable operation of power
systems with large amounts of storage.

Energy storage has a clear environmental value; it helps miti-
gate the intermittency of the renewable resources and thereby
maximize their utilization, while reducing the risk associated with
making advance commitments for a renewable generation owner.
Nevertheless, despite all the potential advantages of storage, if the
value of storage as an arbitrage mechanism is not attractive, the
markets may not invest sufficiently in storage. Hence, unless prop-
er incentives and pricing policies are in place, the environmental
and reliability values of storage might not materialize due to
underinvestment. Therefore, there is a need for development of
econometric models and characterization of the associated optimal
policies that can be used for assessing the value of storage. This pa-
per seeks to provide such characterization by presenting a model
for optimal utilization of ramp-constrained storage in response to
stochastically varying energy prices and studying the correspond-
ing value of storage.

Availability of econometric models of storage and characteriza-
tion of the effects of storage on the price elasticity of demand (PED)
is also important for system operators who need to maintain sta-
bility and guarantee reliability. This is particularly important in
the context of electricity markets since the aggregate PED can af-
fect price volatility and sensitivity to disturbances [2]. According
to [2], in power grids with information asymmetry between con-
sumers, producers, and system operators, robustness of the system
to disturbances is greatly affected by consumers’ real-time valua-
tion of electricity and response to real-time prices.

The existing literature covering various dimensions of storage
and its applications is extensive, both in the area of trading/ware-
housing in operations management and in the area of energy stor-
age. The problem of optimizing purchase, i.e. injecting into storage,
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and sale, i.e., withdrawing from storage, for the case of a ware-
house with fixed size and an initial stock of a certain commodity,
often referred to as the warehouse problem, is a classical problem
in the trading and commercial management of commodities, and
has been studied in the literature extensively. Some works in this
line of research that are most relevant to the work herein include
[3,4], which study the discrete-time case of the warehouse prob-
lem by imposing a limit on the amount that can be injected into
or withdrawn from the warehouse at each time step, and also [5]
which solves the same extension of the warehouse problem in con-
tinuous time. Several other works have also considered this exten-
sion of the warehouse problem, each for a different application (for
instance, see [6]). Although the above-mentioned references and
the work herein share similarities in the structure of the optimal
policy and the associated value function, the differences in the
assumptions on the stochastic price process make the analytical re-
sults of these papers different from one another. Unlike all the pre-
vious works in this area, it is assumed in this paper that the price at
each time period is independent of previous prices. Under this
assumption, explicit formulas (recursive and/or closed-form) are
derived for the thresholds of the optimal policy and for the value
of storage, using the principles of stochastic dynamic program-
ming. The assumption on prices is justified by testing the perfor-
mance of the optimal policy (in the Appendix) against price data
from real-time markets of the Pennsylvania–Jersey–Maryland
(PJM) Interconnection and the Independent System Operator
(ISO) of New England (ISONE); the findings of these tests suggest
that the sensitivity of the optimal policy and value of storage to
the assumption of independent prices is low (please see the
Appendix for details). Another justification for this assumption is
that in practice, empirical estimation of conditional distributions
(needed for a Markovian price model) requires significant amounts
of data. Back of the envelop calculations show that collecting this
much data would require going too far back in the price history.
However, due to non-stationarity, doing so would make the data
irrelevant. Although one can resort to calibrated models for esti-
mation of correlation in data, or try to learn the thresholds directly,
these directions are not pursued in this paper.

The relevant literature that focus particularly on energy storage
is also extensive. Various types of electrical energy storage systems
have been invented and developed for energy networks, and their
characteristics and appropriate applications have been studied [7].
In addition, the feasibility and/or value of integrating particular
storage technologies, from battery storage systems [8] to com-
pressed air energy storage systems [9], etc., have been studied
extensively. However, there is also a large body of literature on
the prospects and economic viability of large-scale integration of
storage (for instance, see [10]), without focusing on a particular
storage technology. Many of these works study various aspects of
the role and value of storage in the management and integration
of fluctuating renewable energy sources. The quantitative aspect
of the work herein is related to those works that study optimal
management strategies for the core problem of controlling energy
storage to maximize profits. For instance, [11] addresses this prob-
lem by developing a multistage looping algorithm to maximize the
profit obtained from a pumped-storage plant using forecasted
hourly prices. Some others use dynamic programming; for in-
stance, [12] takes a numerical approach and deterministically
solves the dynamic programming problem for particular finite
sample paths and then averages the results of these paths. On
the other hand, some works such as [13,14] use dynamic program-
ming to address the storage management problem in an analytical
framework and, like the work herein, study an analytically tracta-
ble model of storage and derive explicit formulas that can give in-
sight into learning the behavior of storage and its implications in
the particular setup of interest. In contrast to [13], which obtains
its core results under the assumption of uniformly distributed gen-
eration from the wind farm, herein storage is studied purely as an
arbitrage mechanism that interacts only with the main grid, with-
out any particular assumption on price distribution other than the
assumption of independent prices. In contrast to [14], ramp con-
straints are explicitly included in the model herein, highlighting
the effects of ramp constraints on the optimal policy. Nevertheless,
some studies have focused on managing storage without any
renewable sources connected to it. For instance, [15] considers
industrial consumers with time-of-use rates and uses dynamic
programming to determine optimal contracts and optimal sizes
of battery storage for such consumers. However, they use a deter-
ministic approach and relax ramp constraints.

The model set forth in this paper and some preliminary results
were reported in [16]. This paper provides a comprehensive expo-
sition which adds several new ideas, core analytical results, and
systematic computational experiments.

The contributions of this paper are summarized as follows:
First, a dynamic model for optimal utilization of storage in the
presence of ramp constraints under the assumption of independent
and exogenous prices is proposed. This model assumes limited
storage capacity and allows sell-back of energy to the grid. Using
the principles of stochastic dynamic programming, the optimal
policy and the corresponding value function are analytically char-
acterized for the finite-horizon case. In particular, recursive equa-
tions are provided for computation of the exact value of storage
for the finite-horizon storage problem. Then, a closed-form upper
bound on the infinite-horizon optimal average value per stage of
storage is obtained over all possible realizations of prices within
a bounded support. This result highlights how the capacity limit
and the ramp constraint bound the value of storage. Next, it is
shown that while the value of storage is a non-decreasing function
of price volatility, the value of storage saturates quickly due to fi-
nite ramping rates as the capacity increases, regardless of price
volatility.

The average PED is then studied in a simulated electricity mar-
ket, where the term ‘‘average’’ reflects the fact that the dependence
of storage response on the stage and the internal state of storage
has been averaged out. It is shown that optimal utilization of stor-
age may, in expectation, induce a considerable amount of price
elasticity near the average price, but little or no elasticity else-
where. While the demand for electricity has often been considered
to be highly inelastic, the existing literature on price elasticity are
mostly based on empirical evidence and qualitative reasoning (see,
for instance, [17,18]). In this paper, price elasticity is studied in a
quantitative framework, characterizing the PED induced by opti-
mally controlled, ramp-constrained storage through an input–out-
put model of response to prices. Next, the study of the PED induced
by storage is extended by addressing the PED as a function of the
internal state of storage. The results highlight the interplay be-
tween state-dependence and price-dependence of the storage re-
sponse in a computational framework. In particular, the buy/sell
phase transition region of the storage response in the price-state
plane is illustrated.

In addition to this paper’s findings regarding the value and
price-responsiveness of storage that have been presented in the
main part of the paper, the results on the validity of the assump-
tion of independent prices presented in the Appendix can be used
as a benchmark for comparison with other results that assume
more complicated models of the stochastic price process.

The remainder of this paper is organized as follows: The dy-
namic model of storage management is introduced in Section 2.
The optimal policies for the storage management problem and
the corresponding value function are presented in Section 3. In Sec-
tion 4, an analytical upper bound on the optimal average value per
stage of storage is derived and computational findings on the value
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of storage are reported. The implications of the optimal policy are
then discussed in Section 5, by studying the average PED of a stor-
age system in Subsection 5.1, and the price-responsiveness of a
storage system as a function of the storage state in Subsection
5.2. The conclusions are presented in Section 6. The Appendix gives
an evaluation of the optimal policy’s performance.

2. A dynamic model of storage

2.1. Notation

The set of positive real numbers (integers) is denoted by Rþ
(Zþ), and non-negative real numbers (integers) by R

�
þ (Z

�
þ). The

probability mass function (PMF) of a random variable K is denoted
by PK, and the cumulative distribution function (CDF) is denoted
by FK. P and F are simply used when there is no ambiguity.

2.2. The model

In this section, a dynamic model for optimal management of
ramp-constrained storage in the presence of stochastically-varying
prices is developed. The first step is to formulate the storage man-
agement problem as a stochastic dynamic programming problem
over a finite horizon.

2.2.1. The decisions
The decision set of the storage owner at each discrete instant of

time k 2 Z
�
þ is characterized by a pair

ðv in
k ;v

out
k Þ 2 ½0; v

� in� � ½0; v
�out� ð1Þ

where, v in
k and vout

k are, respectively, the amount of power that the
consumer injects in, or withdraws from the storage. The corre-
sponding upper bounds (v

� in and v
�out) represent the physical ramp

constraints on storage. Also, vk ¼ v in
k � vout

k 2 ½�v
�out;v

� in� denotes
the net storage response. With a slight abuse of terminology, the
storage response vk may be referred to as demand, with the under-
standing that vk 6 0 implies a negative demand.

2.2.2. The price
The price per unit of energy at each stage kk is sampled from an

exogenous stochastic process that is independently distributed
across time, with mean k

�
k and standard deviation rk, and support

over ½kmin
k ; kmax

k � � ½0;1Þ. It is assumed that at the beginning of each
time interval [k,k + 1], the random variable kk, is materialized and
revealed to the consumer. Note that the distributions of kk can be
different at different stages; however, it is assumed that the price
distribution at each stage is known a priori. It is also assumed that
the feed-in and usage tariffs are the same, i.e., kk is the price per
unit for both purchase (corresponding to vk P 0) and sell-back
(corresponding to vk 6 0), and there are no transaction costs.

2.2.3. The states
The storage state is characterized by a variable

sk 2 ½0; s
�
� ð2Þ

where sk is the amount of energy stored, and s
�

is the upper bound
on storage capacity. The state sk evolves according to:

skþ1 ¼ bsk þ ginv in
k � goutvout

k ð3Þ

where b 6 1 is the decay factor, gin
6 1 and gout P 1 are charging

and discharging efficiency factors. Note that efficiency factors and
ramp rates might in general be complicated functions of the operat-
ing point, i.e., the storage level, but this paper focuses on an ideal
case. The idealized model of the dynamics of storage can be written
as:
skþ1 ¼ sk þ vk; vk 2 ½�v
�

out; v
�

in� ð4Þ

which corresponds to b = 1, gin = 1, and gout = 1.

2.2.4. Penalty and salvage value
There is a penalty hk(sk) associated with storage, where the se-

quence of functions hk : R
�
þ # R

�
þ are assumed to be monotonic.

Also, a salvage value of t̂ 2 ½kmin
N ; kmax

N � is assigned to each unit of en-
ergy left in storage by the end of the time-horizon.

2.2.5. The optimization-based model of ideal storage
Since the goal in this paper is to develop a tractable model that

effectively highlights the important structural features of the opti-
mal control law and the associated value of storage with an empha-
sis on the ramp constraint and storage capacity, the idealized model
of storage will be adopted; this will allow for focusing on the ramp
constraint and storage capacity as the parameters of interest in the
model when analyzing the value and price-responsiveness of stor-
age. Nevertheless, in terms of methodology, it would be straightfor-
ward to include a ‘‘price-adjustment’’ factor in the formulation to
account for injection-withdrawal losses in a similar manner done
in [4]. In addition, the piecewise-linear penalty function that has
been embedded into the model herein can be used as a surrogate
cost to model the dissipation losses associated with keeping energy
in storage. Note also that according to [19], the academic state of
the art is around 95% efficiency for a battery pack and 93% for the
overall system with converters. The industrial state of the art is
around 90% efficiency for batteries [20]. It is also assumed that
the ramp constraint is symmetric, i.e. v

� in ¼ v
�out ¼ v

�
. The idealized

storage management problem can be formulated as a finite-horizon
dynamic programming problem as follows:

min
v0 ;...vN�1

E
XN�1

k¼0

fhkðskÞþkkvkg� t̂sN

" #

s:t: skþ1¼ skþvk

sk 2 ½0;s�
vk 2 ½�v;v �
kk exogenous; and independently distributed according to a PMFPk

ð5Þ

Remark 1. The storage problem is first formulated and solved for
the finite-horizon case. Later in Section 4.1, the infinite-horizon
case is considered and an upper bound on the optimal average
value per stage of storage is obtained.
3. Characterization of the optimal policy

In this section, the optimal policy and the value function for
problem (5) are characterized based on the principles of stochastic
dynamic programming.

Definition 1. Given a sequence of probability mass functions Pk,
k = 0, 1, . . . , N, let Hk and wk be sequences of maps from the set of
all subsets of R

�
þ to R

�
þ, defined as follows:

Hk : I #
X
h2I

hPkðhÞ; 8I � R
�
þ ð6Þ
wk : I #
X
h2I

PkðhÞ; 8I � R
�
þ: ð7Þ

Given v
�
2 Rþ, and maps Hk and wk as defined in (6) and (7), Uv

�

k is
the map from the set of all subsets of R

�
þ to R defined according to

Uv
k : I # v Hk � qwkð ÞI; 8I � Rþ; ð8Þ
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where q = inf I. For instance, U1
k maps an interval (a,b) to

(Hk � awk)(a,b).
Fig. 1. Thresholds as a function of time and state for i.i.d prices with a discretized
truncated log-normal distribution, with mean k

�
k ¼ 49 and rk ¼ 9;v

�
¼ 1,

n ¼ 15;N ¼ 24; t̂ ¼ k
�

k and no storage penalties.
Theorem 1. Consider the finite-horizon storage management prob-
lem (5) with s

�
¼ n v

�
for some n 2 Zþ. Furthermore, assume that the

penalty functions hk:[0,1) ? [0,1), k = 0, . . . , N are piecewise linear
non-decreasing convex functions of the form:

hkðsÞ ¼ hi
ksþ ci

k; s 2 ½i v
�
; ðiþ 1Þv

�
Þ; i 2 Z

�
þ ð9Þ

Then, (i) the optimal policy is characterized as follows: if
sk 2 ½i v

�
; ðiþ 1Þv

�
Þ, for some i 2 Z

�
þ, then

v�k ¼

maxð�sk;�vÞ; tmaxð0;i�1Þ
kþ1 < kk for all i

iv � sk; ti
kþ1 < kk 6 ti�1

kþ1 for i P 1

ðiþ 1Þv � sk; tiþ1
kþ1 < kk 6 ti

kþ1 for all i

v ; kk 6 tiþ1
kþ1 for all i

8>>>>><
>>>>>:

ð10Þ

where the thresholds are computed via the following recursive
equations:

ti
N ¼ t̂; i 2 f0;1;2; . . . ;n� 1g

ti
N ¼ �hi

N; i P n

for k < N :

t0
k ¼ t1

kþ1 þU1
k t1

kþ1; k
max
k

� �
� h0

k

ti
k ¼ ti�1

kþ1 � hi
k þU1

k tiþ1
kþ1; t

i�1
kþ1

� �
þ tiþ1

kþ1 � ti�1
kþ1

� �
Fk ti�1

kþ1

� �
; i P 1

(ii) the value function is a piecewise linear convex function of the form:

VkðsÞ ¼ �ti
ksþ ei

k; s 2 ½i v
�
; ðiþ 1Þv

�
Þ; i 2 Z

�
þ ð12Þ

where ti
k are the thresholds given in (11) and the intercepts ei

k are com-
puted via the following recursive equations:

ei
N ¼0; i2f0;1;2; . . . ;n�1g

ei
N ¼ s

�
ðti

N� t̂Þ; i P n

for k<N :

e0
k ¼ c0

kþe0
kþ1þ v

�
kmin

k þe1
kþ1�e0

kþ1�v
�

t1
kþ1

� �
Fk t0

kþ1

� �
ei

k¼ ci
kþv

�
k
�
þf ti�1

kþ1;t
i
kþ1;t

iþ1
kþ1;e

i�1
kþ1;e

i
kþ1;e

iþ1
kþ1

� �
þg ti�1

kþ1;t
i
kþ1;t

iþ1
kþ1

� �
; i P 1

ð13Þ

where the functions f and g are given by

f ð�Þ ¼ ei�1
kþ1 � vtiþ1

kþ1 þ ei
kþ1 � ei�1

kþ1

� �
Fk ti�1

kþ1

� �
þ eiþ1

kþ1 � ei
kþ1

� �
Fk ti

kþ1

� �
;

gð�Þ ¼ iþ 1ð ÞUv
k tiþ1

kþ1; t
i
kþ1

� �
þ iUv

k ti
kþ1; t

i�1
kþ1

� �
�Uv

k ti�1
kþ1; k

max
k

� �
�Uv

k tiþ1
kþ1; k

max
k

� �
:

Proof 1. Please see this paper’s extended e-print on arXiv [21]. h

Fig. 1 shows how the thresholds vary with time and state for the
case of a discretized truncated log-normal distribution with mean
k
�

k ¼ 49 and rk = 9 for all k, i.e. for independently and identically
distributed (i.i.d) prices. For generating this plot,
v
�
¼ 1;n ¼ 15;N ¼ 24; t̂ ¼ k

�
k, and no storage penalties (i.e. hi

k ¼ 0
for i < n and all k) are assumed.

Remark 2. The form of the optimal policy shows that if one starts
with an empty storage (s0 = 0), then the storage state sk will only
take integer multiples of v

�
since v�k 2 f�v

�
; 0;v

�
g for all k. When

s0 – 0, the storage state will fall on the grid of integer multiples of
v
�

immediately after the first time that v�k ¼ i v
�
�sk or

v�k ¼ ðiþ 1Þv
�
�sk, and hence, v�k 2 f�v

�
;0;v

�
g for the remainder of

the time horizon. This conclusion holds for the infinite-horizon
case as well and can help simplifying the policy and analysis by
focusing on a finite state system.
Remark 3. The upper bound s
�

on the storage capacity is enforced
by choosing hi

k in (9) sufficiently large (i.e. hi
k > kmax

k ) for i P n, so
that it would never be optimal to store energy beyond s

�
. It can

be verified that the thresholds and consequently the optimal policy
are invariant with respect to the choice of hi

k for i P n as long as
hi

k > kmax
k .
Definition 2. The economic value of storage, or simply the value of
storage, is defined as the negative of the cost of the optimal value
of problem (5) divided by the number of stages (N), and is denoted
by V for the finite-horizon case and by V1 for the infinite-horizon
case. Therefore, V ¼ �V0 s0ð Þ=N. For instance, if s0 = 0 (i.e. the con-
sumer starts with an empty storage), it then follows from (12) that
for the finite-horizon case:

V ¼ �V0ð0Þ ¼ �e0
0=N: ð14Þ

Thus, V can be computed using the recursive equations in (13) for
the finite-horizon case.
4. Characterization of the value of storage

4.1. Analytical upper bound on the value of storage

In this subsection, a bound on the long-term value of ramp-con-
strained storage will be derived. Herein, for the purpose of obtain-
ing the bound, it is further assumed that hi

k ¼ 0, for all i 6 n � 1 and
k 6 N. This assumption is consistent with the objective of finding
an upper bound on the value of storage.

Definition 3. Given a control policy pk : 0;1½ Þ2 # ½��v ; �v�, and
starting from an arbitrary initial state s, the infinite-horizon
average cost per stage associated with problem (5) is defined as

cp¼
def lim

N!1

1
N

E
XN�1

k¼0

kkvkjs0 ¼ s

" #
; ð15Þ

where vk = pk(xk,kk). The problem of optimization of cp over all fea-
sible stationary policies will be referred to as the infinite-horizon
storage management problem. The associated optimal cost will be
denoted by c⁄, and V1 ¼def�c� will be referred to as the long-term ex-
pected value of storage.
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Remark 4. It is standard to show that the optimal average cost is
independent of the initial state s0. Moreover, if the relative value
iteration for the infinite-horizon storage problem converges to
some differential cost function H⁄(s), then it is necessary for H⁄(s)
and the optimal average cost per stage c⁄ to satisfy the Bellman
equation (see, for instance, [22]):

H�ðsÞ ¼ E min
v2½maxð�s;�vÞ;minðv;s�sÞ�

kv þ H�ðsþ vÞ
� 	

� c�: ð16Þ
Theorem 2. Consider the infinite-horizon storage management prob-
lem. Suppose that the support of the price distribution function at all
stages lies within an interval [kmin,kmax] # [0,1). All else held con-
stant, the maximum over all possible distributions, of the long-term
value of storage is given by

V1 ¼ �c� ¼ v
�
ðkmax � kminÞ

2
n

nþ 1
¼ ðkmax � kminÞ

2
s
�

v
�

s
�
þv
� ; ð17Þ

and is attained when the prices are sampled from a two-point symmet-
ric distribution with nonzero probability masses placed at the end-
points of the fixed support:

PKðkÞ ¼
1=2 if k ¼ kmin

1=2 if k ¼ kmax

0 otherwise

8><
>:

And for any two-point distribution with PMF

PKðkÞ ¼
a if k ¼ kmax

1� a if k ¼ kmin

0 otherwise

8><
>:

the following holds:

V1 ¼ �c� ¼ v
�
ðkmax � kminÞ

bð1þ bþ � � � þ bn�1Þ
ðbþ 1Þð1þ bþ � � � þ bnÞ

ð20Þ

where b = (1 � a)/a.
Proof 2. Please see this paper’s extended e-print on arXiv [21]. h

If in addition to the support of the price distribution, the mean
of the distribution is also fixed, a tighter bound can be obtained as
stated in Corollary 1:

Corollary 1. Suppose that in addition to fixing the support of the price
distribution function, the mean of the price distribution is also fixed to
l 2 (kmin,kmax). All else held constant, the maximum over all possible
distributions, of the long-term expected value of storage is attained
when the prices are sampled from a two-point distribution with the
following PMF:

PKðkÞ ¼

l�kmin
kmax�kmin

if k ¼ kmax

kmax�l
kmax�kmin

if k ¼ min

0 otherwise

8>><
>>:

The corresponding long-term value of storage is obtained by plugging
b = (kmax � l)/(l � kmin) into (20).
Proof 3. Please see this paper’s extended e-print on arXiv [21]. h
Remark 5. The n/(n + 1) scaling in the optimal average cost per
stage implies that 90% of the maximum possible value of storage
is achieved when the storage capacity is only 9 times the ramp
constraint. Note that this was obtained for an extreme distribution.
As it will be seen in the remainder of this section, for less extreme
distributions with smaller variance over the support, the value of
storage saturates even more quickly. This includes empirical distri-
butions obtained from electricity market data. Furthermore, aging,
dissipation, and non-ideal charging and discharging factors further
reduce the value of storage.
4.2. Computational experiments for characterization of the value of
storage

In this subsection, numerical computations are employed to
characterize the value of the proposed model of storage over a fi-
nite time-horizon and highlight the effects of ramp constraints
and price volatility on the value of storage. Herein, the following
classes of distributions are considered:

� Discretized truncated log-normal distribution, with mean
k
�
¼ 50,

� Discretized uniform distribution, with mean k
�
¼ 50.

The reason for choosing the log-normal distribution is that the
empirical distributions from ISONE and PJM qualitatively resemble
a log-normal distribution, at least for the cases tested in this paper.
The choice of the mean (k

�
¼ 50) is also a realistic choice for average

hourly energy prices in markets such as PJM and ISONE. For the
purpose of these computations, the same price distribution is used
for all k (i.e. it is assumed that prices are independently and iden-
tically distributed). Throughout this section it is assumed that
s0 = 0, which means that the consumer starts with an empty stor-
age. For each of these distributions, all quantities are fixed in the
model other than r, the standard deviation of price distribution,
and n, the ratio of storage capacity s

�
to physical ramp constraint

of storage v
�

. The quantity n ¼ s
�
=v
�

is varied by fixing v
�

and chang-
ing s

�
. Using the fixed quantities N ¼ 24;v

�
¼ 10, and k

�
¼ 50, how V

varies as a function of r and n is examined. For the purpose of these
simulations, t̂ is set equal to the mean of the price distribution.
Herein, hi

k ¼ 0 for all i 6 n � 1 and k 6 N, so that there is no penalty
on storing energy up to capacity. Then, for a fixed time horizon,
how V varies with r and n is examined for each of the following
price distributions:

4.2.1. Discretized truncated log-normal distribution
Fig. 2 illustrates how V changes with r and n, for the discretized

truncated log-normal distribution. The plots show that the value of
storage increases linearly with r. As one would expect, the value of
storage also increases as the storage capacity increases. However, it
is interesting to note that for a fixed standard deviation, the value
of storage saturates fairly quickly as a function of n. Hence, for a gi-
ven time horizon, a fixed ramp constraint, and a fixed r, there ex-
ists a certain range for capacity beyond which the value of storage
will no longer change noticeably. Also, the optimal storage capacity
increases with price volatility.

4.2.2. Discretized uniform distribution
As can be seen in Fig. 3, saturation of the value of storage occurs

at about the same value as in the log-normal case. However, for
certain extreme distributions, such as an asymmetric 2-point dis-
tribution, saturation can occur more quickly. Note also that the va-
lue of storage is a linear function of the standard deviation, just like
the log-normal case.

One interesting observation in these results is that in the pres-
ence of ramp constraints, several distributed storage systems
would be more profitable than one large storage system of equal
ramp constraint and aggregate capacity, due to the quick satura-
tion of V as n increases. Although this observation is based on
the assumption that the ramp constraint and capacity are indepen-
dent, this assumption might actually be valid for the case of
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Fig. 2. V vs. n (left) and r (right) for a few samples, using a discretized truncated log-normal distribution.

Fig. 3. V vs. n (left) and r (right) for a few samples, using a discretized uniform distribution.

A. Faghih et al. / Energy Conversion and Management 76 (2013) 472–482 477
distribution grids in which the ramp constraint is imposed by the
power lines. Another interesting observation is that although the
shape of the plots look quite similar for both distributions, the va-
lue of the uniform distribution is higher than that of the log-nor-
mal. This makes intuitive sense because with the uniform
distribution, on average, the consumer has as many opportunities
for buying at a low price as there are opportunities for selling at
a high price, while for the log-normal case, most of the probability
mass is centered around the mode, which creates fewer opportuni-
ties for arbitrage in expectation.

5. Implications of the optimal policy for price-responsiveness of
storage

Herein, the focus is on understanding the price-dependence and
state-dependence of the optimal policy, and the impact of the
state-price interplay on the storage response. The state-depen-
dence of storage response is first averaged out in order to focus
on the ‘‘average’’ price-responsiveness only, which allows for
addressing the expected price elasticity of demand induced by
storage in the first subsection. Then, in the next subsection, the
interplay between state-dependence and price-dependence of
storage response is explored.

5.1. Average price elasticity of demand induced by storage

In this subsection, in order to study the implications of the opti-
mal policy on price elasticity of demand (PED) in an energy market,
a computational framework for studying the average PED in a sim-
ulated energy market is presented. In the dynamic model studied
in this paper, the storage response depends on price, stage, state,
time-horizon, storage capacity, and ramp constraint. The term
‘‘average PED’’ reflects the fact that the dependence of storage re-
sponse on the stage and the internal state of storage have been
averaged out. It is assumed that there is a fixed time horizon N,
and state-dependence is eliminated by taking expectations. In
particular:

vðk; kÞ ¼ Es0 ;sk
½v�kjkk ¼ k�:

In order to eliminate stage-dependence, one can think of the storage
response-measuring observer as sampling a random time s uni-
formly over {0, � � � , N}. By averaging over this randomness, depen-
dence is maintained on the prices only:

vavgðkÞ ¼ Es½vðs; kÞ�;

which is captured in the simulations by clustering real-time prices,
and averaging over each cluster.

In these numerical simulations, the average is taken over ran-
dom instances of prices and storage initial states. It is assumed that
N = 288, which corresponds to a period of 24 h, where real-time
prices are updated once in every 5 min. The storage system imple-
ments the optimal policy given in Theorem 1. For the purpose of
these computations, the same price distribution is used for all k
(i.e. it is assumed that prices are independently and identically dis-
tributed). For generating random price sequences, a discretized
truncated log-normal distribution with k

�
¼ 52 and r = 22 is used,
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because the log-normal distribution qualitatively resembles the
empirical distribution of prices from ISONE and PJM, as mentioned
in the previous section. Also, a mean of 52 and standard deviation
of 22 are realistic choices for real-time energy prices in markets
such as PJM and ISONE on a day with moderate volatility. Based
on the results in Section 4.2, for these model parameters, a storage
capacity of s

�
¼ 5 v

�
is a reasonable choice for all consumers. Just

like all previous simulations, t̂ is set equal to k
�
. Also, v

�
is set equal

to 10, and hi
k ¼ 0 for all k 6 N and i < n.

Fig. 4 illustrates how the average storage response changes as a
function of price.

As the plot suggests, the expected demand seems to be consid-
erably more responsive to changes in the prices that fall in the
mid-portion of the price range. This portion serves as a steep tran-
sition region, in which the policy quickly switches from the ‘‘buy’’
policy to the ‘‘sell’’ policy.

To characterize price elasticity, first recall the standard defini-
tion of PED:

PED ¼ Dd=d
Dk=k

ð21Þ

where d denotes demand. To characterize PED more accurately, one
needs to bear in mind that the overall PED should have the firm
component of demand in it. The firm component of demand is the
amount of energy purchased by the consumers from the grid to sat-
isfy any demand other than the energy they store in their storage
devices; note that the amount of the firm demand does not depend
on the prices. Hence, in this setup, d = df + vavg(k), where df denotes
the firm component of demand. It can be observed in Fig. 4 that the
average PED is almost zero for prices that are considerably larger or
smaller than the mean price, and only in the mid-portion of the plot
(i.e. around the mean price), a substantial average PED can be no-
ticed. One can verify using Eq. (21) with d = df + vavg(k) that the
average PED (i.e. the PED computed using the average storage re-
sponse) depends on how the average storage response compares
with the firm demand. Table 1 shows the average PED around the
mean price, using different values for df.

5.2. State-dependent price-responsiveness of a storage system

In this subsection, a computational framework is presented for
understanding the behavior of storage as a function of price and
the amount of stored energy, and for characterization of the buy/
sell phase transition region in the price-state plane. In order to
eliminate stage dependence, the infinite-horizon version of the
storage problem (5) will be considered and policy iteration (see,
e.g., [22]) will be performed to numerically obtain a stationary
Fig. 4. vavg(k) vs. k, using the discretized log-normal price distribution.
(stage-independent) policy for purchase/sale as a function of both
state and price. This section provides a qualitative picture of the
structural characteristics of the behavior of storage, and a frame-
work for estimating the PED as a function of the state. Herein, it
is assumed that the consumer starts with an empty storage, imply-
ing that the states would only take on integer multiples of the
ramp constraint. The same price distribution is also used for all
stages (i.e. the prices are assumed to be i.i.d). In these computa-
tions, a discretized truncated log-normal price distribution is first
used, and then the results are compared against the case of a dis-
cretized uniform distribution. For both distributions, a mean of
about k

�
¼ 50 and a standard deviation of about r = 30 are used.

Both distributions also have the same support. Furthermore,
v
�
¼ 1 and n = 10. Fig. 5 illustrates how the storage response varies

with price for three cases of the state (when the storage is empty
(i = 0), when the storage is half full (i = n/2), and when the storage
is nearly full (i = n � 1)).

Note in Fig. 5 the considerable effect of the storage state on stor-
age response, compared to the small effect of the price distribution.
More specifically, for both distributions, when the storage is
empty, the optimal policy recommends purchasing from the grid
even when the prices are somewhat above the mean price. Note
that for the log-normal case, this policy change occurs at a slightly
lower price because of the left skewness of the log-normal distri-
bution. Though, when the storage is half full, the optimal decision
switches from the ‘‘buy-it-all’’ policy to the ‘‘sell-it-all’’ policy right
at the mean price for the uniform distribution; for the log-normal
distribution, this policy change occurs slightly before the mean
price, which is again due to the left skewness of the log-normal dis-
tribution. Finally, when the storage is nearly full, for both distribu-
tions the optimal policy is to sell as much energy as possible for
most prices, and to do nothing for the low prices.

The transition points in the infinite-horizon policy from sell-it-
all to buy-it-all on the s � k plane are shown in Fig. 6. Any point to
the left of and/or below the transition points is a buying policy,
which corresponds to v�ðs; kÞ ¼ v

�
, and any point to the right of

and/or above the transition points is a selling policy, which corre-
sponds to v�ðs; kÞ ¼ �v

�
. The plus signs show a direct transition

from buying to selling when moving along the vertical axis, i.e.,
as storage state varies, unless they are immediately followed by
a star on their right. The stars denote a transition through a ‘‘Do
Nothing’’ policy when moving along the horizontal axis, i.e., as
price varies. Therefore, at the prices denoted by ⁄ the optimal pol-
icy is v⁄ = 0.

Fig. 6 clearly illustrates the interplay between the state-depen-
dence and the price-dependence of the storage response. Note also
in Fig. 6 the small effect of the price distribution on the storage re-
sponse. The optimal policy for the log-normal case is slightly more
shifted to left compared to that of the uniform case, which is again
caused by the left skewness of the log-normal distribution.

The above results can now be used to characterize the PED as a
function of the storage state. In order to compute the overall PED
using (21), once again the demand (d) is quantified such that it in-
cludes the firm component of the demand as well: d = df + v⁄(s,k).
Note that PED (s) = 0 for all the points in the ‘‘Buy Region’’ and in
the ‘‘Sell Region’’ because the storage response is constant in those
regions. However, around the transition curve, the PED is non-zero
Table 1
Average price elasticity of demand around the mean
price using different values for df.

df Average price elasticity

v
� �3.6

3 v
� �1.2

8 v
� �0.45



Fig. 5. Storage response vs. price for three sample states for discretized truncated log-normal (left) and discretized uniform (right) price distributions, both with mean 50.

Fig. 6. Occurrence points of policy change from sell-it-all to buy-it-all in the s � k plane, for discretized truncated log-normal (left) and discretized uniform (right) price
distributions.
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because Dd < 0 in that region. But Dd can only take two values:
Dd ¼ �2 v

�
when there is a direct transition from the ‘‘Buy Region’’

to the ‘‘Sell Region’’, and Dd ¼ �v
�

when the transition is through a
‘‘Do Nothing’’ policy. Hence,

PEDðsÞ ¼ � 2 v
�

k

ðdf þ v�ðs; kÞÞDk
and PEDðsÞ ¼ � v

�
k

ðdf þ v�ðs; kÞÞDk

around the points denoted by + and ⁄, respectively, where, depend-
ing on the point at which the PED shall be computed, v⁄ takes on
one of the values in f�v

�
;0; v

�
g.

Remark 6. The effects of inefficiencies such as conversion losses
and aging on the optimal policy and price-responsiveness of
storage are not directly considered in this paper. While such
inefficiencies certainly limit the economic value of storage, an
important question to ask is what is their effect on the response of
storage to prices? For the case of battery storage, aging is
proportional to the amount of current withdrawn or injected.
Intuitively, this would make buying energy for, or selling energy
from storage less profitable at moderate prices. Within the class of
threshold policies, the corresponding optimal selling thresholds
would be higher and buying thresholds would be lower than what
has been derived in this paper and the ‘‘do nothing’’ range would
be wider. Qualitatively, this would mean an overall choppier
response from storage, with high elasticity over a narrow range of
prices and low elasticity over a wide range, which would be
undesirable from a system operation and reliability perspective.
6. Conclusion

In this paper, a dynamic model for optimal control of storage
under ramp constraints and exogenous, stochastic prices was pro-
posed. The associated optimal policy and value function were de-
rived, and explicit formulas for their computation were given.
Moreover, an analytical upper bound on the long-term average va-
lue of storage was derived, which can be useful in assessing viabil-
ity of investment in storage. Also, computational experiments were
presented for characterizing the value of storage, and important
implications of the associated optimal policy for price-responsive-
ness of storage were studied. In particular, it was shown that
regardless of price volatility, the value of storage saturates quickly
as the storage capacity increases. Furthermore, the non-trivial
interplay between state-dependence and price-dependence of the
optimal storage response was highlighted, and it was shown that
on average, a considerable amount of price elasticity is expected
near the mean price. These results provide insight into learning
the behavior of storage, particularly modeling and estimating the
value and response of a ramp-constrained storage system when
used as an arbitrage mechanism.

While this paper largely focused on the economic value of stor-
age, it is important to recognize and quantify the environmental
and the reliability value of storage. With proper control policies,
storage can help matching stochastic supply with demand, improv-
ing system frequency and voltage profiles, and possibly mitigating
large blackouts. The development of a systematic framework for
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quantifying the value of storage, the trade-offs between reliability,
environmental, and economic value of storage, and design of real-
time pricing and market mechanisms for optimally striking these
trade-offs are important directions for future research.
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Appendix A. An evaluation of the optimal policy

Herein, to examine the results of this paper and verify the valid-
ity of its assumptions, the optimal policy is tested against actual
market price data. The finite-horizon optimal policy (10) is applied
to real-time wholesale market data taken from PJM [23] and ISONE
[24] to examine the competitive ratio (CR) of the policy when ap-
plied to real-world price data. This would allow for assessing
whether the assumption of independent prices is actually reason-
able for the storage problem.

Definition A.1. The empirical value of storage is defined as the
negative of the cost of the optimal value of problem (5) given a
price sequence, divided by the number of stages (N), and is denoted
by V.
Table A.1
Competitive Ratio for each set of simulations.

Source/month Comp ratio # Of days used Range from mean

PJM/July 0.86 27 1 � r
0.84 28 1.5 � r
0.81 All All

PJM/December 0.88 22 1 � r
0.87 25 1.5 � r
0.77 All All

ISONE/May 0.72 25 1 � r
0.71 All 1.5 � r
0.71 All All

ISONE/November 0.89 29 1 � r
0.88 All 1.5 � r
0.88 All All
Definition A.2. The competitive ratio (CR) is defined as the ratio of
the empirical value obtained from the optimal policy to the abso-
lute maximum empirical value that would have been obtained
deterministically, had the entire price sequence been known a
priori.

A relatively high CR would not necessarily suggest that prices
are independent; rather, it could mean that the sensitivity of the
optimal policy to the correlations, if any, in real-world prices is
low. If the CR obtained form the assumption of independent prices
is relatively high, one can suggest that the additional information
that the current price provides on future prices (as a conditional
distribution) has little value.

The setup of the experiment is as follows. Actual data is taken
for hourly energy prices (for 16 h of each day, from 8 a.m. to 12
a.m.) for two different months (December 2010 and July 2011)
from PJM, and May and November 2011 from ISONE. The choice
of these dates and times was arbitrary. For the purpose of these
simulations, t̂, the salvage value, is set equal to �k, the empirical
mean. To perform the simulations, the empirical distribution of
the data for each case is first found. In these computations, the
same price distribution is used for all k; i.e., all the price data for
the entire month is taken, and this data is used to find the empir-
ical distribution of prices in that month so that the thresholds for
the optimal policy for all hours are computed from the same
empirical distribution. In other words, it is assumed that prices
are independently and identically distributed (i.i.d). Then, at the
beginning of each stage the actual price of that stage is revealed
to the optimal policy and the decision is recorded. The profit result-
ing from the optimal policy can then be computed using these re-
corded decisions. Next, for the purpose of comparison, it is
assumed that the entire price sequence is perfectly known a priori,
and the value that results from deterministically and omnisciently
maximizing the profit against the materialized prices is computed.
This deterministic value is the absolute best that an omniscient
agent could have done, and its corresponding deterministic policy
shall be referred to as the omniscient policy. Then, the CR is found
by computing the ratio of the value obtained from the optimal pol-
icy to the value obtained from the omniscient policy. The CR gives a
measure of how well the optimal policy has performed.

For each month, there is a number of days in which the average
price is well above the average price of the entire month. These
days are outliers in the sense that the empirical distribution is
way off for modeling their price sequence. This issue is addressed
by performing three sets of simulations. For the first set of simula-
tions, only those days in which the average price is within one
standard deviation of the average price of all the selected days in
the month are chosen. In the second set of simulations, those days
in which the average price is within about 1.5 times the standard
deviation of the average price of all the selected days in the month
are chosen. Then, in the third set of simulations, all days of the
month are taken into account, even the outliers. The CR is recorded
for each day, and the average CR for each month and each case is
reported in Table A.1. Comparing the results in Table A.1 reveals
how much these outlier days affect the CR. Note that a ramp con-
straint of v

�
¼ 1 and a storage capacity of s

�
¼ 10 is used in all the

simulations, and it is assumed that there are no penalties on
storage.

Fig. A.1 shows the plots of the empirical value of storage for
each day of the month in the second set of simulations (i.e. for
those days whose average price is within 1.5 times the standard
deviation of the average price of all the selected days in the
month). As it can be seen in Fig. A.1, nearly perfect matching is ob-
tained in some days, while in some other days there is discrepancy.
This discrepancy appears to be mainly due to two reasons. The first
reason seems to be that multiple spikes exist in some days with
only a few (or no) prices that are below the buying thresholds.
So, even though there are ample opportunities for arbitrage, even
the lowest of these spiky prices is not within the normal range.
In Table A.1, this effect can be observed for the month of December
in PJM, in which the removal of those days with high average
prices improved the CR from 0.77 to 0.88. The second reason seems
to be that in some days all the prices are almost in the same range
compared to the thresholds (i.e. they are either mostly above the
buying thresholds or mostly below the selling thresholds). In other
words, the low CR is just an outcome of an undesirable sequence of
prices (sample path). So, even though for the deterministic case
with the price sequence known a priori it is possible to take advan-
tage of these small price differentials, the thresholds are unable to
capture these opportunities. This effect can be observed in the
month of May in Table A.1, in which the removal of those days with
high average prices did not really improve the CR; this is because
the average price in the days with a relatively flat price sequence
is not necessarily considerably higher than the month’s average.
So far, the thresholds have been computed for the optimal policy
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Fig. A.1. The empirical value of storage for each day of the month in the second set of simulations, obtained from applying the optimal policy (solid line) and the omniscient
policy (dashed line).

Table A.2
Competitive ratios using the empirical distribution from the past 30, 20, and 10 days.

Source/Month Past 30 days Past 20 days Past 10 days

PJM/July 0.68 0.70 0.75
PJM/December 0.55 0.65 0.67
ISONE/May 0.69 0.70 0.68
ISONE/November 0.91 0.89 0.89
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using the empirical price distributions from the prices in that same
month. This can be taken as a proxy for the sensitivity of the value
of storage to correlations in the actual prices, given that the opti-
mal policy assumes independent prices. Although there is no
benchmark to compare with, the CR obtained from applying the
optimal policy seems reasonably high, and it suggests that the sen-
sitivity of the value of storage to the assumption of independent
prices is low. Also, although the optimal policy does not do as well
on those days with higher than normal, or very flat price profiles, it
does not appear that a Markovian or Martingale assumption on
prices could do any better, because these prices are outliers and
do not seem to follow a structured stochastic pattern that can be
learned from past data. However, this needs to be substantiated
by further studies and systematic experiments.

In the next set of experiments, instead of computing the empir-
ical distribution from the data of that same month, the empirical
distributions are computed from the price data of the past 30 days,
the past 20 days, and the past 10 days, respectively. The results are
shown in Table A.2.

An interesting observation is that for both months of May and
November in ISONE, using the empirical distribution from the past
20 days gives almost the same CR as using the empirical
distribution from May and November themselves (as reported in
Table A.1). However, comparing the competitive ratios shown
in Table A.2 for both months in PJM with the results shown in
Table A.1, it can be observed that for PJM, using the empirical dis-
tribution from historical data does not do as well as the empirical
distribution from that month itself.
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