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Abstract—The paper proposes a control-theoretic framework
for verification of numerical software systems, and puts forward
software verification as an important application of control and
systems theory. The idea is to transfer Lyapunov functions and
the associated computational techniques from control systems
analysis and convex optimization to verification of various soft-
ware safety and performance specifications. These include but
are not limited to absence of overflow, absence of division-
by-zero, termination in finite time, absence of dead-code, and
certain user-specified assertions. Central to this framework are
Lyapunov invariants. These are properly constructed functions of
the program variables, and satisfy certain properties—analogous
to those of Lyapunov functions—along the execution trace.
The search for the invariants can be formulated as a convex
optimization problem. If the associated optimization problem is
feasible, the result is a certificate for the specification.

Index Terms—Software Verification, Lyapunov Invariants,
Convex Optimization.

I. INTRODUCTION

SOFTWARE in safety-critical systems implements complex
algorithms and feedback laws that control the interaction

of physical devices with their environments. Examples of such
systems are abundant in aerospace, automotive, and medical
applications. The range of theoretical and practical challenges
that arise in analysis, design, and implementation of safety-
critical software systems is extensive, see, e.g., [1], [2], [3],
and the references therein. While safety-critical software must
satisfy various resource allocation, timing, scheduling, and
fault tolerance constraints, the foremost requirements are that it
must be free of run-time errors, and when expected, terminate
in finite time. The main objective of this paper is to present a
systematic framework for verification of these properties.

A. Overview of Existing Methods

In this section, we provide a brief overview of formal
verification methods, as well as system theoretic methods,
noting that a sharp contrast defining the boundaries between
these methods does not exist.
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1) Formal Methods: Formal verification methods are
model-based techniques [4], [5], [6] for proving or disproving
that a mathematical model of a software (or hardware) satisfies
a given specification, i.e., a mathematical expression of a
desired behavior. The approach adopted in this paper too,
falls under the category of model-based verification methods.
Herein, we briefly review model checking, abstract interpre-
tation, and some of the related methods.

a) Model Checking (MC): In model checking [7] the
system is modeled as a finite state transition system, e.g.,
automata [8] or timed automata [9], [10], and the specifications
are expressed in some form of logic formulae, e.g., temporal or
propositional logic [11]. The verification problem then reduces
to a graph search, and symbolic algorithms are used to perform
an exhaustive exploration of all possible states. MC has proven
to be a powerful technique for verification of circuits [12],
security and communication protocols [13], [14] and stochastic
processes [15].

For software systems, when applicable, MC techniques
result in strong statements about the behavior of the system.
The trade-off is in the increased computational requirements
and limited scalability to large systems. The advent of Binary
Decision Diagrams [16] and SAT solvers [17], which are
efficient data structures for representing and solving boolean
satisfiability problems, significantly improved the scalability
of these techniques. An important trend in MC, supported
by recent advances in Satisfiability Modulo Theories (SMT)
solvers [18], is formulation of verification problems as SMT
problems. These advances have improved the scope and power
of MC, as well as alternative verification methods that reduce
to MC. Nevertheless, when the program has non-integer vari-
ables, or when the state space is continuous, MC is not directly
applicable. In such cases, combinations of various abstraction
techniques, e.g., relational abstractions and constraint-based
approaches, and MC have been proposed [19], [20], [21], [22];
scalability, however, remains a challenge.

b) Abstract Interpretation (AI): Abstract Interpretation is
a theory for formal approximation of the operational semantics
of computer programs in a systematic way [23]. Construction
of abstract models involves abstraction of domains—typically
in the form of a combination of sign, interval, polyhedral, and
congruence abstractions of sets of data—and functions that
operate on the domains. A system of fixed-point equations is
then generated by symbolic forward/backward executions of
the abstract model. An iterative equation solving procedure,
e.g., Newton’s method is used for solving the nonlinear
system of equations, the solution of which results in an
inductive invariant assertion, which is then used for checking
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the specifications. In practice, to guarantee finite convergence
of the iterates, narrowing (refining outer approximations) op-
erators are constructed to estimate the solution, followed by
widening (expandding inner approximations) to improve the
speed of convergence to the estimate [24]. This compromise
can be a source of conservatism in analysis [25]. Nevertheless,
these methods have been used in practice for verification
of (limited) properties of embedded software of commercial
aircraft [26], [27]. With time, several extensions and instantia-
tions of AI have been developed. For example, [28] uses AI for
the analysis of numerical errors in floating-point arithmetic,
while [29] focuses on index array variables. Over time, AI
has also benefitted from significant improvements, notably via
improved solutions to the fixed-point equations [30], and the
development of many new abstract domains, some of which
have obvious links to system-theoretic methods [31].

c) Other methods: Alternative formal methods can be
found in the computer science literature mostly under deduc-
tive verification [11], type inference [32], and data flow analy-
sis [33]. These methods share extensive similarities with AI in
that a notion of program abstraction and symbolic execution or
constraint propagation is present in all of them. Further details
and discussions of the methodologies can be found in [5] and
[24]. More recently, optimization and constraint satisfaction
methods [34] have gained increased attention as the primary
mechanisms to carry the computations associated with these
methods. Program analysis engines combining several of the
aforementioned techniques have also been developed and have
been successful in verifying device derivers in real-world
applications [35].

2) System Theoretic Methods: While software analysis has
been the subject of an extensive body of research in computer
science, treatment of the topic in the control systems literature
is more recent yet growing fast.

The relevant results in the systems and control literature
can be found in the field broadly described as hybrid systems.
However, the actual range of system models developed and
used by the systems community extends far beyond that, with
a systematic emphasis on the development of models that com-
bine expressivity with problem tractability. Linear systems [36]
naturally embody this tendency. With the advent of many
different models with various tractability properties, significant
efforts were devoted to drawing bridges linking these different
models. One-way bridges include the abstraction mechanisms
used in nonlinear and robust system analyses as early as 120
years ago [37], and then revisited by the nonlinear and robust
control community [38], [39] and sometimes linked to other
well-known concepts in system theory [40]. Two-way bridges
linking equivalent models can be found in the extensive
literature dealing with bisimulations [41], [42], [43].

Many of the available techniques for safety verification of
hybrid systems are explicitly or implicitly based on computa-
tion of reachable sets, either exactly or approximately. These
include but are not limited to techniques based on quantifier
elimination [44], ellipsoidal calculus [45], and mathematical
programming [46]. Alternative approaches aim at establishing
properties of hybrid systems through barrier certificates [47],
numerical computation of Lyapunov functions [48], [49], or

by combined use of bisimulation mechanisms and Lyapunov
techniques [50], [51], [19].

Inspired by the concept of Lyapunov functions in stability
analysis of nonlinear dynamical systems [37], [52], in this
paper we propose Lyapunov invariants for analysis of com-
puter programs. While Lyapunov functions and similar con-
cepts have been used in verification of stability or temporal
properties of system level descriptions of hybrid systems [53],
[48], [49], to the best of our knowledge, this paper is the
first to present a systematic framework based on Lyapunov
invariance and convex optimization for verification of a broad
range of code-level specifications for computer programs 1.
Accordingly, it is in the systematic integration of new ideas
and some well-known tools within a unified software analysis
framework that we see the main contribution of our work, and
not in carrying through the proofs of the underlying theorems
and propositions. The introduction and development of such
framework provide an opportunity for the field of control to
systematically address a problem of great practical significance
and interest to both computer science and engineering com-
munities. The framework can be summarized as follows:

1) Dynamical system interpretation and modeling (Sec-
tion II). We introduce generic dynamical system rep-
resentations of programs, along with specific modeling
languages which include Mixed-Integer Linear Models
(MILM), Graph Models, and Mixed-Integer Linear over
Graph Hybrid Models (MIL-GHM).

2) Lyapunov invariants as behavior certificates for com-
puter programs (Section III). Analogous to a Lyapunov
function, a Lyapunov invariant is a real-valued function
of the program variables, and satisfies a difference
inequality along the trace of the program. It is shown
that such functions can be formulated for verification of
various software specifications that can be formalized as
unreachability or finite-time termination.

3) A computational procedure for finding the Lyapunov
invariants (Section IV). The procedure is standard and
constitutes these steps: (i) Restricting the search space
to a linear subspace. (ii) Using convex relaxation tech-
niques to formulate the search problem as a convex
optimization problem, e.g., a Linear Program (LP) [59],
or a Semidefinite Program (SDP) [60], including SDP
relaxations of semi-algebraic problems [61], [62], [63].
(iii) Using convex optimization software for numerical
computation of the certificates.

II. DYNAMICAL SYSTEM INTERPRETATION AND
MODELING OF COMPUTER PROGRAMS

We interpret computer programs as discrete-time dynamical
systems and introduce generic models that formalize this
interpretation. We then introduce MILMs, Graph Models, and
MIL-GHMs as structured cases of the generic models. The
specific models are used for computational purposes.

1This paper constitutes the synthesis and extension of ideas and computa-
tional techniques expressed in the workshop [54], and subsequent conference
papers [55], [56] and [57]. Some of the ideas presented in [54], [55], and [56]
were independently reported in [58].
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A. Generic Models

1) Concrete Representation of Computer Programs: We
will consider generic models defined by a finite state space
set X with selected subsets X0 ⊆ X of initial states, and
X∞ ⊂ X of terminal states, and by a set-valued state transi-
tion function f : X 7→ 2X , such that f(x) ⊆ X∞,∀x ∈ X∞.
We denote such dynamical systems by S(X, f,X0, X∞).

Definition 1: A program P is a set of sequences with
elements from a given set (e.g., a subset of Rn). The dynamical
system S(X, f,X0, X∞) is a C-representation of a computer
program P, if the set of all sequences in P is equal to the set
of all sequences X = (x(0), x(1), . . . , x(t), . . . ) of elements
from X, satisfying

x (0) ∈ X0 ⊆ X, x (t+ 1) ∈ f (x (t)) ∀t ∈ Z+ (1)

The uncertainty in x(0) allows the program to depend on initial
conditions, and the uncertainty in f models dependence on
parameters, as well as the ability to respond to real-time inputs.

Example 1: Integer Division (adopted from [4]): The func-
tionality of Program 1 is to compute the result of the integer
division of dd (dividend) by dr (divisor).

int IntegerDivision ( int dd, int dr )

{int q = {0}; int r = {dd};
while (r >= dr)

{ q = q + 1;

r = r− dr; }
return r; }

Program 1: The Integer Division Program

A concrete dynamical system model (C-representation) of
Program 1 is constructed by defining the following elements:

X = Z4, where Z = Z∩ [−32768, 32767]

X0 = {(dd, dr, q, r) ∈ X | q = 0, r = dd}

X∞ = {(dd, dr, q, r) ∈ X | r < dr}

f : (dd, dr, q, r) 7→ (dd, dr, q, r) + u

u =

 (0, 0, 1,−dr),

(0, 0, 0, 0),

(dd, dr, q, r) ∈ X\X∞

(dd, dr, q, r) ∈ X∞

Note that if dd ≥ 0, and dr ≤ 0, then the program never
exits the “while” loop, eventually leading to an overflow. The
program terminates if both dd and dr are positive.

2) Abstract Representation of Computer Programs: In a
C-representation, the elements of the state space X belong
to a finite subset of the set of rational numbers that can be
represented by a fixed number of bits in a specific arithmetic
framework, e.g., fixed-point or floating-point arithmetic. When
the elements of X are non-integers, due to the quantization
effects, the set-valued map f often defines very complicated
dependencies between the elements of X, even for simple
programs involving only elementary arithmetic operations.
An abstract model over-approximates the behavior set in
the interest of tractability. The drawbacks are conservatism
of the analysis and (potentially) undecidability. Nevertheless,
abstractions in the form of formal over-approximations make

it possible to formulate computationally tractable, sufficient
conditions for a verification problem that would otherwise be
intractable.

Definition 2: Given a program P and its C-representation
S(X, f,X0, X∞), we say that S(X, f,X0, X∞) is an A-
representation, i.e., an abstraction of P , if X ⊆ X , X0 ⊆ X0,
and f(x) ⊆ f(x) for all x ∈ X, and the following condition
holds:

X∞ ∩X ⊆ X∞. (2)

Thus, every trajectory of the actual program is also a
trajectory of the abstract model. For proving Finite-Time
Termination (FTT), we need to be able to infer that if all
trajectories of S eventually enter X∞, then all trajectories of
S will eventually enter X∞. Requiring that X∞ ⊆ X∞ may
not be possible as X∞ is often a discrete set, while X∞ is
often dense in the domain of real numbers. The definition of
X∞ as in (2) resolves this issue.

Construction of S(X, f,X0, X∞) from S(X, f,X0, X∞)
involves abstraction of each of the elements X, f, X0, X∞
in a way that is consistent with Definition 2. Abstraction of
the state space X often involves replacing the domain of floats
or integers or a combination of these by the domain of real
numbers. Abstraction of X0 or X∞ often involves a combina-
tion of domain abstractions and abstraction of functions that
define these sets. For instance, the sign function:

sgn(x) = 1I[0,∞) (x)− 1I(−∞,0) (x) ,

which may appear explicitly or in modeling if-then-else blocks
in computer programs [64], can be abstracted as follows:

sgn(x) ∈ {v | xv ≥ 0, v ∈ {−1, 1}} .
We are often interested in such polynomial set-valued abstrac-
tions. As another example, we show that the absolute value
function over the domain [−1, 1] can be represented (precisely)
in the following way:

abs (x) = {xv | x = 0.5 (v + w) , (w, v) ∈ [−1, 1]× {−1, 1}}
Interested readers may refer to [64] for semialgebraic set-
valued abstractions of some commonly-used nonlinearities
including trigonometric functions, abstractions of modular
arithmetic operations, and also abstractions of fixed-point and
floating point operations based on ideas from [65].

B. Specific Models of Computer Programs

Specific modeling languages are particularly useful for
automating the proof process in a computational framework.
Here, three specific modeling languages are proposed: Mixed-
Integer Linear Models (MILM), Graph Models, and Mixed-
Integer Linear over Graph Hybrid Models (MIL-GHM).

1) Mixed-Integer Linear Model (MILM): Proposing
MILMs for software modeling and analysis is motivated by
the observation that by imposing linear equality constraints
on boolean and continuous variables over a quasi-hypercube,
one can obtain a relatively compact representation of arbitrary
piecewise affine functions defined over compact polytopic
subsets of Euclidean spaces (Proposition 1). The earliest
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reference to the statement of universality of MILMs appears
to be [66], in which a constructive proof is given for the
one-dimensional case. A constructive proof for the general
case is given in [64].

Proposition 1: Universality of Mixed-Integer Linear
Models. Let f : X 7→ Rn be a piecewise affine map with a
closed graph, defined on a compact state space X ⊆ [−1, 1]

n
,

consisting of a finite union of compact polytopes. That is:

f (x) ∈ 2Aix+ 2Bi subject to x ∈ Xi, i ∈ Z (1, N)

where, each Xi is a compact polytopic set. Then, f can be
specified precisely, by imposing linear equality constraints on a
finite number of binary and continuous variables ranging over
compact intervals. Specifically, there exist matrices F and H,
such that the following two sets are equal:

G1 = {(x, f (x)) | x ∈ X}
G2 =

{
(x, y) | F

[
x w v 1

]T
= y,H

[
x w v 1

]T
= 0,

(w, v) ∈ [−1, 1]
nw × {−1, 1}nv

}
.

Mixed Logical Dynamical Systems (MLDS) with similar
structure were developed in [67] for analysis of a class of hy-
brid systems. The main contribution here is in the application
of the model to software analysis. A MIL model of a computer
program is defined via the following elements:

1) The state space X ⊂ [−1, 1]
n.

2) Letting ne = n + nw + nv + 1, the state transition
function f : X 7→ 2X is defined by two matrices F, and
H of dimensions n-by-ne and nH -by-ne respectively,
according to:

f(x) ∈
{
F
[
x w v 1

]T
| H

[
x w v 1

]T
= 0,

(w, v) ∈ [−1, 1]
nw × {−1, 1}nv

}
. (3)

3) The set of initial conditions is defined via either of the
following:

a) If X0 is finite with a small cardinality, then it
can be conveniently specified by extension. We
see in Section IV that per each element of X0,
one constraint needs to be included in the set of
constraints of an optimization problem associated
with the verification task.

b) If X0 is not finite, or |X0| is too large, an
abstraction of X0 can be specified by a matrix
H0 ∈ RnH0

×ne which defines a union of compact
polytopes in the following way:

X0 =
{
x ∈ X | H0

[
x w v 1

]T
= 0,

(w, v) ∈ [−1, 1]
nw × {−1, 1}nv

}
.

4) The set of terminal states X∞ is defined by

X∞ =
{
x ∈ X | H

[
x w v 1

]T
6= 0,

∀ (w, v) ∈ [−1, 1]
nw × {−1, 1}nv

}
.

Therefore, S(X, f,X0, X∞) is well defined. A com-
pact description of a MILM of a program is either
of the form S (F,H,H0, n, nw, nv) , or of the form
S (F,H,X0, n, nw, nv). The MILMs can represent a broad
range of computer programs of interest in control applications,
including but not limited to control programs of gain scheduled
linear systems in embedded applications. In addition, gen-
eralization of the model to programs with piecewise affine
dynamics subject to quadratic constraints is straightforward.

Example 2: A MILM of an abstraction of the Integer
Division program (Program 1: Section II-A), with all the
integer variables replaced with real variables, is given by
S (F,H,H0, 4, 3, 0) , where the matrices F, H, H0 are dis-
played at the bottom of this page. Here, M is a scaling
parameter used for bringing all the variables within [−1, 1] .

2) Graph Model: Practical considerations such as univer-
sality and strong resemblance to the natural flow of computer
code render graph models an attractive and convenient model
for software analysis. A graph model is defined on a directed
graph G (N , E) with the following elements:

1) A set of nodes N = {∅}∪{1, . . . ,m}∪{on} . These can
be thought of as line numbers or code locations. Nodes
∅ and on are starting and terminal nodes, respectively.
The only possible transition from node on is the identity
transition to node on .

2) A set of edges E = {(i, j, k) | i ∈ N , j ∈ O (i)} ,
where the outgoing set O (i) is the set of all nodes to
which transition from node i is possible in one step.
Definition of the incoming set I (i) is analogous. The
third element in the triplet (i, j, k) is the index for the kth
edge between i and j, and Aji = {k | (i, j, k) ∈ E} .

3) A set of program variables xl ∈ Ω ⊆ R, l ∈ Z (1, n) .
Given N and n, the state space of a graph model is
X = N × Ωn. The state x̃ = (i, x) of a graph model
has therefore, two components: The discrete component
i ∈ N , and the continuous component x ∈ Ωn ⊆ Rn.

4) A set of transition labels T
k

ji assigned to every edge
(i, j, k) ∈ E , where T

k

ji maps x to the set T
k

jix =
{T kji (x,w, v) | (x,w, v) ∈ Skji}, where (w, v) ∈
[−1, 1]

nw × {−1, 1}nv , and T kji : Rn+nw+nv 7→ Rn
is a polynomial function and Skji is a semialgebraic set.

If T
k

ji is a deterministic map, we drop Skji and define

T
k

ji ≡ T kji (x).
5) A set of predicate labels Πk

ji assigned to every edge
(i, j, k) ∈ E , where Πk

ji is a semialgebraic set. A state

H0 =


1 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −2 0 0 0 1 0 1
−2 0 0 0 0 0 1 1

, H =

 0 2 0 −2 1 0 0 1
0 −2 0 0 0 1 0 1
−2 0 0 0 0 0 1 1

, F =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1/M
0 −1 0 1 0 0 0 0


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transition along the edge (i, j, k) is possible if and only
if x ∈ Πk

ji.
6) Semialgebraic invariant sets Xi ⊆ Ωn, i ∈ N are

assigned to every node on the graph, such that (i, x) ∈
{(i, y)|y ∈ Xi}. Equivalently, a state x̃ = (i, x)
satisfying x ∈ X\Xi is unreachable.

Therefore, a graph model is a well-defined specific case of the
generic model S(X, f,X0, X∞), with X = N × Ωn, X0 =
{∅} ×X∅, X∞ = {on} ×Xon and f : X 7→ 2X defined as:

f (x̃) ≡ f (i, x) =
{

(j, T
k

jix) | j ∈ O (i) , x ∈ Πk
ji ∩Xi

}
.

Remark 1: A few remarks are due regarding graph models:

1) The invariant set of node ∅ contains all the available
information about the initial conditions of the program
variables: (∅, x) ∈ {(∅, y)|y ∈ X∅}.

2) Multiple edges between nodes enable modeling of logi-
cal “or” or “xor” type conditional transitions. This also
allows systems with nondeterministic discrete transitions
to be modeled.

3) The transition label T
k

ji may represent a simple update
rule which depends on the real-time input. For instance,
if T = Ax + Bw, and S = Rn × [−1, 1] , then

x
T7→ {Ax+Bw | w ∈ [−1, 1]} . In general, T

k

ji may
represent an abstraction of a nonlinearity.

Conceptually similar models, namely control flow graphs, have
been reported in [4] (and the references therein) for software
verification, and in [68], [69] for modeling and verification of
hybrid systems. Interested readers may consult [64] for further
details regarding treatment of graph models with time-varying
state-dependent transitions labels which arise in modeling
operations with arrays.

3) Mixed-Integer Linear over Graph Hybrid Model (MIL-
GHM): The MIL-GHMs are graph models in which the
effects of several lines and/or functions of code are compactly
represented via a MILM. As a result, the graphs in such models
have edges (possibly self-edges) that are labeled with matrices
F and H corresponding to a MILM as the transition and
predicate labels. Such models combine the flexibility provided
by graph models and the compactness of MILMs. An example
is presented in Section V.

C. Specifications

The specification that can be verified in our framework
can generically be described as unreachability and finite-time
termination.

Definition 3: A Program P ≡ S(X, f,X0, X∞) is said to
satisfy the unreachability property with respect to a subset
X− ⊂ X, if for every trajectory X ≡ x (·) of (1), and
every t ∈ Z+, x(t) does not belong to X−. A program
P ≡ S(X, f,X0, X∞) is said to terminate in finite time if
every solution X = x (·) of (1) satisfies x(t) ∈ X∞ for some
t ∈ Z+.

As discussed below, several critical specifications associated
with runtime errors are special cases of unreachability.

1) Overflow: Absence of overflow can be characterized as
a special case of unreachability by defining:

X− =
{
x ∈ X |

∥∥α−1x∥∥∞ > 1, α = diag {αi}
}

where αi > 0 is the overflow limit for variable i.
2) Out-of-Bounds Array Indexing: An out-of-bounds array

indexing error occurs when a variable exceeding the length
of an array, references an element of the array. Assuming
that xl is the corresponding integer index and L is the array
length, one must verify that xl does not exceed L at location
i, where referencing occurs. This can be accomplished by
defining X− = {(i, x) ∈ X | |xl| > L} over a graph model
and proving that X− is unreachable. This is also similar to
“assertion checking” defined next.

3) Program Assertions: An assertion is a mathematical
expression whose validity at a specific location in the code
must be verified. It usually indicates the programmer’s expec-
tation from the behavior of the program. Using graph models,
verifying an assertion of the form x ∈ Ai at location i in the
code can be done as follows:

assert x ∈ Ai ⇒ define X− = {(i, x) ∈ X | x ∈ X\Ai} .
Verification of an assertion of the form x /∈ Ai is analogous. In
particular, safety assertions for division-by-zero or taking the
square root (or logarithm) of positive variables are standard
assertions that must be automatically included in numerical
programs (cf. Sec. III-A, Table I).

4) Program Invariants: A program invariant is a property
that holds throughout the execution of the program. The prop-
erty indicates that the variables reside in a subset XI ⊂ X .
Thus, any method that is used for verifying unreachability of
a subset X− ⊂ X, can be applied for verifying invariance of
XI by defining X− = X\XI , and vice versa.

D. The Implications of Abstractions

It is well-known in computer science that proper abstrac-
tions preserve correctness, see, e.g., [70]. It can be verified
that if an A-representation S(X, f,X0, X∞) of a program
P satisfies the unreachability specification with respect to a
set X− ⊂ X , then so does the actual program, i.e., the
C-representation S(X, f,X0, X∞), with respect to any set
X− ⊆ X−. Moreover, given (2), FTT lends itself from
the A-representation to the C-representation. For a formal
statement and proof see [64]. Since we are not concerned with
undecidability issues, and in light of the preceding discussion,
in the remainder of this paper we will not differentiate between
abstract and concrete representations.

III. LYAPUNOV INVARIANTS AS BEHAVIOR CERTIFICATES

Analogous to a Lyapunov function, a Lyapunov invariant is
a real-valued function of the program variables satisfying a
difference inequality along the execution trace.

Definition 4: A (θ, µ)-Lyapunov invariant for the system
S(X, f,X0, X∞) is a function V : X 7→ R such that

V (x+)− θV (x) ≤ −µ, ∀x ∈ X, x+ ∈ f (x) : x /∈ X∞,
(4)

where (θ, µ) ∈ [0,∞)2.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. Y, MONTH 2012 6

Thus, a Lyapunov invariant satisfies the inequality (4) along
the trajectories of S until they reach a terminal state X∞.
It follows from Definition 4 that a Lyapunov invariant is
not necessarily nonnegative, or bounded from below, and in
general it need not be monotonically decreasing. While the
zero level set of V defines an invariant set in the sense
that V (xk) ≤ 0 implies V (xk+l) ≤ 0, for all l ≥ 0,
monotonicity depends on θ and the initial condition. For
instance, if V (x0) ≤ 0, for all x0 ∈ X0, then (4) implies
that V (x) ≤ 0 along the trajectories of S, however, V (x)
may not be monotonic if θ < 1, though it will be monotonic
for θ ≥ 1. Furthermore, the level sets of a Lyapunov invariant
need not be bounded closed curves.

Natural Lyapunov invariants for graph models are functions
of the form

V (x̃) ≡ V (i, x) = σi (x) , i ∈ N, (5)

which assign a polynomial Lyapunov function to every node
i ∈ N on the graph G (N , E) . However, we stress that
this is simply one way of assigning Lyapunov functions to
graph models, and certainly not the most general, or the most
powerful way.

The following Proposition formalizes the interpretation of
Lyapunov invariants for the specific modeling languages.

Proposition 2: Let S (F,H,X0, n, nw, nv) and properly la-
beled graph G (N , E) be the MIL and graph models for a
computer program P. The function V : [−1, 1]

n 7→ R is a
(θ, µ)-Lyapunov invariant for P if it satisfies:

V (Fxe)− θV (x) ≤ −µ, ∀ (x, xe) ∈ [−1, 1]
n × Ξ,

where

Ξ =
{

(x,w, v, 1) | H
[
x w v 1

]T
= 0,

(w, v) ∈ [−1, 1]
nw × {−1, 1}nv

}
.

The function V : N×Rn 7→ R, satisfying (5) is a (θ, µ)-
Lyapunov invariant for P if

σj(x+)− θσi (x) ≤ −µ,
∀ (i, j, k) ∈ E , (x, x+) ∈ (Xi ∩Πk

ji)× T
k

jix.

Note that a generalization of (4) allows θ and µ to depend on
the state, although simultaneous search for θ (x) and V (x)
leads us to non-convex conditions (in the parameters of V
and θ), unless the dependence of θ on the state is fixed a-
priori. We allow θ to depend on the discrete component of the
state in the following way:

σj(x+)− θkjiσi (x) ≤ −µji,
∀ (i, j, k) ∈ E , (x, x+) ∈ (Xi ∩Πk

ji)× T
k

jix (6)

A. Behavior Certificates

1) Finite-Time Termination (FTT) Certificates: The follow-
ing proposition is applicable to FTT analysis of both finite and
infinite state models.

Proposition 3: Finite-Time Termination. Consider a pro-
gram P, and its dynamical system model S(X, f,X0, X∞).

If there exists a (θ, µ)-Lyapunov invariant V : X 7→ R, uni-
formly bounded on X\X∞, satisfying (4) and the following
conditions

V (x) ≤ −η ≤ 0, ∀x ∈ X0 (7)

µ+ (θ − 1) ‖V ‖∞ > 0 (8)

max (µ, η) > 0 (9)

where ‖V ‖∞ = sup
x∈X\X∞

|V (x)| < ∞, then P terminates in

finite time, and an upper-bound on the number of iterations is
given by

Tu =



log (µ+ (θ − 1) ‖V ‖∞)− log (µ)

log θ
, θ 6= 1, µ > 0

log (‖V ‖∞)− log (η)

log θ
, θ 6= 1, µ = 0

‖V ‖∞ /µ , θ = 1
(10)

Proof: The proof is omitted but can be found in [64].
Example 3: Consider the Integer Division Program of

Example 1. The function V : X 7→ R, defined according
to V : (dd,dr, q, r) 7→ r is a (1,dr)-Lyapunov invariant
for Integer Division: at every step, V decreases by dr > 0.
Since X is finite, Program 1 terminates in finite time. This,
however, only proves absence of infinite loops. The program
could terminate with an overflow.

Remark 2: Parallels of these ideas for proving termination
of programs exist in the classical computer science literature
under the notion of ranking functions. A ranking function is
a map g : X 7→ Y, such that (Y,<) forms a well ordered set,
i.e., every subset of Y has a smallest element. If a program
is defined by a relation R ⊂ X × X, and g : X 7→ Y is a
ranking function satisfying g(x) < g(x′) for all (x, x′) ∈ R,
then g is a certificate for termination of the program. Recently,
construction and verification of ranking functions based on
linear optimization, or binary reachability analysis have gained
attention and shown success in verification of device drivers
of the Windows operating system [71], [72].

2) Separating Manifolds and Certificates of Boundedness:
Let V be a Lyapunov invariant satisfying (4) with θ = 1. The
level sets of V, defined by Lr(V )

def
= {x ∈ X : V (x) < r}, are

invariant with respect to (1) in the sense that x(t+1) ∈ Lr(V )
whenever x(t) ∈ Lr(V ). However, for r = 0, the level sets
Lr(V ) remain invariant with respect to (1) for any θ ≥ 0. This
is an important property with the implication that θ = 1 (i.e.,
monotonicity) is not necessary for establishing a separating
manifold between the reachable set and the unsafe regions of
the state space (cf. Theorem 1).

Theorem 1: Lyapunov Invariants as Separating Mani-
folds. Let V denote the set of all (θ, µ)-Lyapunov invariants
satisfying (4) for program P ≡ S(X, f,X0, X∞). Let I be
the identity map, and for h ∈ {f, I} define

h−1 (X−) = {x ∈ X | h (x) ∩X− 6= ∅} .

A subset X− ⊂ X, where X−∩X0 = ∅ can never be reached
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along the trajectories of P, if there exists V ∈ V satisfying

sup
x∈X0

V (x) < inf
x∈h−1(X−)

V (x) (11)

and either θ = 1, or one of the following two conditions hold:

(I) θ < 1 and inf
x∈h−1(X−)

V (x) > 0. (12)

(II) θ > 1 and sup
x∈X0

V (x) ≤ 0. (13)

Proof: The proof is presented in Appendix II.
The following corollary follows from Theorem 1 and

Proposition 3, and presents computationally implementable
criteria (cf. SectionIV) for simultaneously establishing FTT
and absence of overflow.

Corollary 1: Overflow and FTT Analysis Consider a pro-
gram P, and its dynamical system model S(X, f,X0, X∞).
Let α > 0 be a diagonal matrix specifying the overflow limit,
and let X− = {x ∈ X |

∥∥α−1x∥∥∞ > 1}. Let q ∈ N ∪ {∞} ,
h ∈ {f, I} , and let the function V : X 7→ R be a (θ, µ)-
Lyapunov invariant for S satisfying

V (x) ≤ 0 ∀x ∈ X0. (14)

V (x) ≥ sup
{∥∥α−1h (x)

∥∥
q
− 1
}

∀x ∈ X. (15)

Then, an overflow runtime error will not occur during any
execution of P. In addition, if µ > 0 and µ+ θ > 1, then, P
terminates in at most Tu iterations where Tu = µ−1 if θ = 1,
and for θ 6= 1 we have:

Tu =
log (µ+ (θ − 1) ‖V ‖∞)− logµ

log θ

≤ log (µ+ θ − 1)− logµ

log θ
(16)

where, ‖V ‖∞ = sup
x∈X\{X−∪X∞}

|V (x)| .
Proof: The proof is presented in Appendix II.

Application of Corollary 1 with h = f typically leads to
less conservative results compared with h = I , though the
computational costs are also higher. See [64] for remarks on
variations of Corollary 1 to trade off conservativeness and
computational complexity.

a) General Unreachability and FTT Analysis over Graph
Models: The results presented so far in this section (Theorem
1, Corollary 1, and Proposition 3) are readily applicable to
MILMs. These results are applied in Section IV to formulate
the verification problem as a convex optimization problem.
Herein, we present an adaptation of these results to analysis
of graph models.

Definition 5: A cycle Cm on a graph G (N , E) is an
ordered list of m triplets (n1, n2, k1) , (n2, n3, k2) , ...,
(nm, nm+1, km) , where nm+1 = n1, and (nj , nj+1, kj) ∈ E ,
∀j ∈ Z (1,m) . A simple cycle is a cycle with no strict sub-
cycles.

Corollary 2: Unreachability and FTT Analysis of Graph
Models. Consider a program P and its graph model G (N , E) .
Let V (i, x) = σi (x) be a Lyapunov invariant for G (N , E) ,
satisfying (6) and

σ∅ (x) ≤ 0, ∀x ∈ X∅ (17)

and either one of the following two conditions:

(I) : σi (x) > 0, ∀x ∈ Xi ∩Xi−, i ∈ N\{∅} (18)

(II) : σi (x) > 0, ∀x ∈ Xj ∩ T−1 (Xi−) ,

i ∈ N\{∅} , j ∈ I (i) , T ∈
{
T
k

ij

}
(19)

where

T−1 (Xi−) = {x ∈ Xi|T (x) ∩Xi− 6= ∅} .
Then, P satisfies the unreachability property w.r.t. the collec-
tion of sets Xi−, i ∈ N\{∅} . In addition, if for every simple
cycle C ∈ G, the following three conditions hold:

(θ (C)− 1) ‖σ (C)‖∞ + µ (C) > 0, (20a)
µ (C) > 0, (20b)
‖σ (C)‖∞ <∞, (20c)

where

θ (C) =
∏

(i,j,k)∈C
θkij , µ (C) = max

(i,j,k)∈C
µkij ,

‖σ (C)‖∞ = max
(i,.,.)∈C

sup
x∈Xi\Xi−

|σi (x)|

then P terminates in at most Tu iterations where

Tu =
∑

C∈G:θ(C)=1

‖σ (C)‖∞
µ (C) +

∑
C∈G:θ(C)6=1

log ((θ (C)− 1) ‖σ (C)‖∞ + µ (C))− log µ (C)
log θ (C)

Proof: The proof is presented in Appendix II.
For verification against an overflow violation specified by

a diagonal matrix α > 0, Corollary 2 is applied with
X− = {x ∈ Rn |

∥∥α−1x∥∥∞ > 1}. Hence, (18) becomes

σi (x) ≥ p (x) (
∥∥α−1x∥∥

q
− 1), ∀x ∈ Xi, i ∈ N\{∅} ,

where p (x) > 0. User-specified assertions, as well as many
standard safety specifications, such as absence of division-by-
zero can be verified using Corollary 2 (See Table I).

– Identification of Dead Code: Suppose that we wish to
verify that a discrete location i ∈ N\{∅} in a graph model
G (N , E) is unreachable. If a function satisfying the criteria of
Corollary 2 with Xi− = Rn can be found, then location i can
never be reached. Condition (18) then becomes σi (x) ≥ 0,
for all x ∈ Rn.

TABLE I
APPLICATION OF COROLLARY 2 TO VERIFICATION OF VARIOUS SAFETY

SPECIFICATIONS.

apply Corollary 2 with:
loc i: assert x ∈ Xa → Xi− = {x ∈ Rn | x /∈ Xa}
loc i: assert x /∈ Xa → Xi− = {x ∈ Rn | x ∈ Xa}
loc i: (expression)/xo → Xi− = {x ∈ Rn | xo = 0}
loc i: 2k

√
xo → Xi− = {x ∈ Rn | xo < 0}

loc i: log (xo) → Xi− = {x ∈ Rn | xo ≤ 0}
loc i: dead code → Xi− = Rn
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Example 4: Consider Program 3 and its graph model as
displayed in Figure 1.

void ComputeTurnRate (void)

L0 : {double x = {0}; double y = {∗PtrToY};
L1 : while (1)

L2 : { y = ∗PtrToY;

L3 : x = (5 ∗ sin(y) + 1)/3;

L4 : if x > −1 {
L5 : x = x + 1.0472;

L6 : TurnRate = y/x; }
L7 : else {
L8 : TurnRate = 100 ∗ y/3.1416 }}

Program 3

0

4 58

1

T
65

6

T
41

x > −1x ≤ −1

Fig. 1. Graph Model of an Abstraction of Program 3

Note that x can be zero right after the assignment at L3 :
x = (5 sin(y) + 1)/3. However, at location L6, x cannot be
zero and division-by-zero will not occur. The graph model
of an abstraction of Program 3 is defined by the following
elements: T65 : x 7→ x + 1.0472, and T41 : x 7→ [−4/3, 2] .
The other transition labels are identity. The only non-universal
predicate labels are Π54 and Π84 as shown in the figure. Define

σ6 (x) = −x2 − 100x + 1,

σ5 (x) = −(x + 1309/1250)2 − 100x− 2543/25

σ0 (x) = σ1 (x) = σ4 (x) = σ8 (x) = −x2 + 2x− 3.

It can be verified that V (x) = σi (x) is a (θ, 1)-Lyapunov
invariant for Program 3 with variable rates: θ65 = 1, and
θij = 0, ∀ (i, j) 6= (6, 5). Since

−2 = sup
x∈X0

σ0 (x) < inf
x∈X−

σ6 (x) = 1

the state (6, x = 0) cannot be reached. Hence, a division by
zero will never occur. We show in the next section how to find
such functions in general.

Remark 3: It is well-known that lifting the state space of
a dynamical system in a systematic way can result in a
significant improvement in the quality of analysis using simple
(e.g. quadratic) Lyapunov functions, see, e.g., [73]. Naturally,
the idea of lifting extends to software analysis. As we already
mentioned, assigning Lyapunov invariants to the nodes of a
graph model according to (5) is one intuitive way for defining
Lyapunov invariant for graph models. The overall framework,
however, can accommodate more general formulations, either
by allowing a more complicated dependency (for the invari-
ants) on the discrete component of the state space, or by lifting
the state space model. The latter can be done, for instance, by
augmenting additional states to encode more memory from
past operations or visited locations. Parallel of this idea exists

in the computer science literature under the notion of progress
invariants [74]. It is also known that Lyapunov analysis of
reduced graph models obtained from proper projection of an
original graph to a lower-dimensional graph can be com-
putationally and methodologically advantageous [75] since
several transitions can be composed into one transition and
the Lyapunov inequalities are required to be satisfied only
for the aggregate transition. Parallels of this idea exist in the
control literature under the notion of non-monotonic Lyapunov
functions [76] and in the computer science literature under the
notion of relational abstractions [22].

IV. COMPUTATION OF LYAPUNOV INVARIANTS

It is well known that the main difficulty in using Lyapunov
functions in system analysis is finding them. Naturally, using
Lyapunov invariants in software analysis inherits the same
difficulties. However, the recent advances in hardware and
software technology, e.g., semi-definite programming [77],
[78], and linear programming software [79] present an op-
portunity for new approaches to software verification based
on numerical optimization.

A. Preliminaries

1) Convex Parameterization of Lyapunov Invariants: The
chances of finding a Lyapunov invariant are increased when
(4) is only required on a subset of X\X∞. For instance, for
θ ≤ 1, it is tempting to replace (4) with

V (x+)− θV (x) ≤ −µ,
∀x ∈ X\X∞ : V (x) < 1, x+ ∈ f (x) (21)

In this formulation V is not required to satisfy (4) for those
states which cannot be reached from X0. However, the set
of functions V : X 7→ R satisfying (21) is not convex and
finding a solution for (21) is typically much harder than (4).
Such non-convex formulations are not considered in this paper.

The first step in the search for a function V : X 7→ R
satisfying (4) is selecting a finite-dimensional linear parame-
terization of a candidate function V :

V (x) = Vτ (x) =

n∑
k=1

τkVk (x) , τ = (τk)
n
k=1 , τk ∈ R,

(22)
where Vk : X 7→ R are fixed basis functions. Next, for every
τ = (τk)Nk=1 let

φ(τ) = max
x∈X\X∞, x+∈f(x)

Vτ (x+)− θVτ (x),

(assuming for simplicity that the maximum does exist). Since
φ (·) is a maximum of a family of linear functions in τ , φ (·) is
a convex function. If minimizing φ (·) over the unit disk yields
a negative minimum, the optimal τ∗ defines a valid Lyapunov
invariant Vτ∗(x). Otherwise, no linear combination (22) yields
a valid solution for (4).

The success and efficiency of the proposed approach de-
pend on computability of φ (·) and its subgradients. While
φ (·) is convex, the same does not necessarily hold for
Vτ (x+)− θVτ (x) as a function of x. In fact, if X\X∞ is non-
convex, which is often the case even for very simple programs,
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computation of φ (·) becomes a non-convex optimization prob-
lem, even if Vτ (x+)− Vτ (x) is a nice (e.g. linear or concave
and smooth) function of x. To get around this hurdle, we
propose using convex relaxation techniques which essentially
lead to computation of a convex upper bound for φ (τ).

2) Convex Relaxation Techniques: Such techniques con-
stitute a broad class of methods for constructing finite-
dimensional, convex approximations for non-convex optimiza-
tion problems. Some of the results most relevant to the
software verification framework presented in this paper can be
found in [80] for SDP relaxation of binary integer programs,
[81] and [82] for SDP relaxation of quadratic programs,
[83] for S-Procedure in robustness analysis, and [84], [63]
for sum-of-squares relaxation in polynomial non-negativity
verification. We provide a brief overview of the latter two
techniques.

a) The S-Procedure : The S-Procedure is commonly
used for construction of Lyapunov functions for nonlinear
dynamical systems. Let functions φi : X 7→ R, i ∈ Z (0,m) ,
and ψj : X 7→ R, j ∈ Z (1, n) be given, and suppose that we
are concerned with evaluating the following assertions:

(I): φ0 (x) > 0, ∀x ∈ {x ∈ X | φi (x) ≥ 0, ψj (x) = 0, ∀i, j}

(II): ∃τi ∈ R+, ∃µj ∈ R, such that

φ0 (x) >

m∑
i=1

τiφi (x) +

n∑
j=1

µjψj (x) .

The implication (II) → (I) is trivial. The process of replacing
assertion (I) by its relaxed version (II) is called the S-
Procedure. Note that (II) is convex in decision variables τi and
µj . The implication (I) → (II) is generally not true and the
S-Procedure is called lossless for special cases where (I) and
(II) are equivalent. A well-known such case is when m = 1,
n = 0, and φ0, φ1 are quadratic functionals. A comprehensive
discussion of the S-Procedure as well as available results on
its losslessness can be found in [85]. Other variations of the
S-Procedure with non-strict inequalities exist as well.

b) Sum-of-Squares (SOS) Relaxation : The SOS relax-
ation technique can be interpreted as the generalized version
of the S-Procedure and is concerned with verification of the
following assertion:

fj (x) ≥ 0, ∀j ∈ J, gk (x) 6= 0, ∀k ∈ K, hl (x) = 0, ∀l ∈ L
⇒ −f0 (x) ≥ 0, (23)

where fj , gk, hl are polynomial functions. It is easy to see
that the problem is equivalent to verification of emptiness
of a semialgebraic set, a necessary and sufficient condition
for which is given by the Positivstellensatz Theorem [86]. In
practice, sufficient conditions in the form of nonnegativity of
polynomials are formulated, which are in turn relaxed to SOS
conditions. Let Σ [y1, . . . , ym] denote the set of SOS poly-
nomials in m variables y1, ..., ym, i.e. the set of polynomials

that can be represented as p =
t∑
i=1

p2i , pi ∈ Pm, where Pm
is the polynomial ring of m variables with real coefficients.
Then, a sufficient condition for (23) is that there exist SOS

polynomials τ0, τi, τij ∈ Σ [x] and polynomials ρl, such that

τ0 +
∑

i
τifi +

∑
i,j
τijfifj +

∑
l
ρlhl + (

∏
gk)2 = 0

Matlab toolboxes such as SOSTOOLS [87], YALMIP [88],
SparsePOP [89], and GloptiPoly [90] automate the process of
converting an SOS problem to an SDP, which is subsequently
solved by available software packages such as LMILAB [77],
or SeDuMi [78]. Interested readers are referred to [63], [91],
[84], [92], [93], [62], [61] for more details.

Before we proceed, we introduce the following notation.
A linear parameterization of the subspace of polynomial
functionals with total degree not greater than d is given by:

Vdx =

{
V : Rn 7→ R | V (x) = KTZ (x) , K ∈ R

(n+d
d )
}
,

where Z (x) is a vector of length
(
n+d
d

)
, consisting of all

monomials of degree less than or equal to d in n variables
x1, ..., xn. In particular, the linear parameterization of the
space of quadratic functionals mapping Rn to R is given by:

V2
x =

{
V : Rn 7→ R |V (x) =

[
x
1

]T
P

[
x
1

]
, P ∈ Sn+1

}
,

where Sn is the set of n-by-n symmetric matrices.

B. Optimization of Lyapunov Invariants for MILMs

Natural Lyapunov invariant candidates for MILMs are
quadratic and affine functionals. Given a program P and
its MIL model S (F,H,X0, n, nw, nv), for convenience in
notation, we define matrices Li, i = 1, . . . , 5 as follows:

L1 =

[
F
L5

]
, L2 =

[
In 0n×(ne−n)
01×(ne−1) 1

]
,

L3 =

[
In+nw

0(nv+1)×(n+nw)

]T
, L4 =

 0(n+nw)×nv

Inv

01×nv

T ,
L5 =

[
0(ne−1)×1

1

]T
.

1) Quadratic Invariants: We have the following
proposition.

Proposition 4: SDP Search for Quadratic Invariants.
A program P ≡ S (F,H,X0, n, nw, nv) admits a quadratic
(θ, µ)-Lyapunov invariant V ∈ V2

x, if there exists a matrix
Y ∈ Rne×nH , ne = n + nw + nv + 1, diagonal matrices
Dv ∈ Dnv , and Dxw ∈ Dn+nw

+ , and a symmetric matrix
P ∈ Sn+1, satisfying the following LMI:

LT1 PL1 − θLT2 PL2 � He (Y H) + LT3DxwL3+

LT4DvL4 − (λ+ µ)LT5 L5

where λ = TraceDxw + TraceDv, and Dxw � 0.

Proof: The proof is presented in Appendix II.
The following theorem summarizes verification of absence

of overflow and/or FTT for MILMs. The result follows from
Proposition 4 and Corollary 1 with q = 2, and h = f, though
the theorem is presented without a detailed proof.
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Theorem 2: Optimization-Based MILM Verification. Let
α : 0 ≺ α � In be a diagonal positive definite matrix
specifying the overflow limit. An overflow runtime error
does not occur during any execution of P if there exist
matrices Yi ∈ Rne×nH , diagonal matrices Div ∈ Dnv ,
positive semidefinite diagonal matrices Dixw ∈ Dn+nw

+ , and a
symmetric matrix P ∈ Sn+1 satisfying the following LMIs:[

x0 1
]
P
[
x0 1

]T ≤ 0, ∀x0 ∈ X0

LT1 PL1 − θLT2 PL2 � He (Y1H) + LT3D1xwL3+

LT4D1vL4 − (λ1 + µ)LT5 L5

LT1 ΛL1 − LT2 PL2 � He (Y2H) + LT3D2xwL3+

LT4D2vL4 − λ2LT5 L5

where Λ = diag
{
α−2,−1

}
, λi = TraceDixw + TraceDiv,

and Dixw � 0, i = 1, 2. In addition, if µ + θ > 1, then P
terminates in a most Tu steps where Tu is given in (16).

2) Affine Invariants: Affine Lyapunov invariants can often
establish strong properties, e.g., boundedness, for variables
with simple uncoupled dynamics (e.g. counters) at a low com-
putational cost. For variables with more complicated dynam-
ics, affine invariants may simply establish sign-invariance or
more generally, upper or lower bounds on a linear combination
of certain variables. We will see in Section V that establishing
these simple behavioral properties is important as they can be
recursively added to the model (e.g., the matrix H in a MILM,
or the invariant sets Xi in a graph model) to improve the
chances of success in proving stronger properties via higher-
order invariants. It is possible to search for the affine invariants
via semidefinite programming or linear programming.

Proposition 5: SDP Formulation of Linear Invariants.
There exists a (θ, µ)-Lyapunov invariant V ∈ V1

x for a
program P ≡ S (F,H,X0, n, nw, nv) , if there exists a
matrix Y ∈ Rne×nH , a diagonal matrix Dv ∈ Dnv , a positive
semidefinite diagonal matrix Dxw ∈ D(n+nw)×(n+nw)

+ , and a
matrix K ∈ Rn+1 satisfying the following LMI:

He(LT1KL5 − θLT5KTL2) ≺ He(Y H) + LT3DxwL3+

LT4DvL4 − (λ+ µ)LT5 L5

where λ = TraceDxw + TraceDv and 0 � Dxw.
Proposition 6: LP Formulation of Linear Invariants.

There exists a (θ, µ)-Lyapunov invariant for a program P ≡
S (F,H,X0, n, nw, nv) in the class V1

x, if there exists a
matrix Y ∈ R1×nH , and nonnegative matrices Dv, Dv ∈
R1×nv , Dxw, Dxw ∈ R1×(n+nw), and a matrix K ∈ Rn+1

satisfying:

KTL1 − θKTL2 − Y H − (Dxw −Dxw)L3−
(Dv −Dv)L4 − (D1 + µ)L5 = 0

D1 +
(
Dv +Dv

)
1r +

(
Dxw +Dxw

)
1n+nw ≤ 0

Dv, Dv, Dxw, Dxw ≥ 0

where D1 is either 0 or −1.

The advantage of using SDP for computation of linear invari-
ants is that efficient SDP relaxations for treatment of binary

variables exists [81], [82], [94], though the computational costs
are typically higher than the LP-based approaches. In contrast,
linear programming relaxations of the binary constraints are
more involved than the corresponding SDP relaxations. Two
extreme remedies can be readily considered. The first is
to relax the binary constraints and treat the variables as
continuous variables. The second is to consider each of the
2nv different possibilities (one for each vertex of {−1, 1}nv )
separately. This approach is practical only if nv is small. More
sophisticated schemes can be developed based on hierarchical
relaxations or convex hull approximations of binary integer
programs [95], [80]. The survey paper [62] also covers some
recent developments in this direction based on polynomial
optimization.

C. Optimization of Lyapunov Invariants for Graph Models

A linear parametrization of Lyapunov invariants for graph
models is defined according to (5), where for every i ∈ N ,
we have σi (·) ∈ Vd(i)x , where d (i) is a selected degree
bound for σi (·) . Depending on the dynamics of the model,
the degree bounds d (i) , and the convex relaxation technique,
the corresponding optimization problem becomes a linear,
semidefinite, or SOS optimization problem.

1) Node-wise Polynomial Invariants: We present generic
conditions for verification over graph models using SOS pro-
gramming. Although LMI conditions for verification of linear
graph models using quadratic invariants and the S-Procedure
for relaxation of non-convex constraints can be formulated,
we do not present them here due to space limitations. Such
formulations are presented in the extended report [64], along
with executable Matlab code in [96]. The following theorem
follows from Corollary 2.

Theorem 3: Optimization-Based Graph Model Verifica-
tion. Consider a program P , and its graph model G (N , E) .

Let V : Ωn 7→ R, be given by (5), where σi (·) ∈ Vd(i)x . Then,
the functions σi (·) , i ∈ N define a Lyapunov invariant for
P, if for all (i, j, k) ∈ E we have:

− σj(T kji (x,w)) + θkjiσi (x)− µkji ∈ Σ [x,w] ,

subject to (x,w) ∈
((
Xi ∩Πk

ji

)
× [−1, 1]nw

)
∩ Skji (24)

Furthermore, P satisfies the unreachability property w.r.t. the
collection of sets Xi−, i ∈ N\{∅} , if there exist εi ∈ (0,∞) ,
i ∈ N\{∅} , such that

−σ∅ (x) ∈ Σ [x] subject to x ∈ X∅ (25)
σi (x)− εi ∈ Σ [x] subject to x ∈ Xi ∩Xi−, i ∈ N\{∅}

(26)

As discussed in Section IV-A2b, the SOS relaxation techniques
can be applied for formulating the search problem for func-
tions σi satisfying (24)–(26) as a convex optimization problem.
For instance, if((

Xi ∩Πk
ji

)
× [−1, 1]nw

)
∩ Skji

= {(x,w) | fp (x,w) ≥ 0, hl (x,w) = 0} ,



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. Y, MONTH 2012 11

then, (24) can be relaxed as an SOS optimization problem of
the following form:

− σj(T kji (x,w)) + θkjiσi (x)− µkji −
∑
p

τpfp−∑
p,q

τpqfpfq −
∑
l

ρlhl ∈ Σ [x,w] , s.t. τp, τpq ∈ Σ [x,w] .

The SOS optimization problems can then be formulated as
semidefinite programs using existing software packages [87],
[88], [89], [90].

V. CASE STUDY

In this section we apply the framework to analysis of
Program 4, displayed below.

/ ∗ EuclideanDivision.c ∗ /
F0 : int IntegerDivision ( int dd, int dr )

F1 : {int q = {0}; int r = {dd};
F2 : while (r >= dr) {
F3 : q = q + 1;

F4 : r = r− dr;

Fon: return r; }
L0 : int main ( int X, int Y ) {
L1 : int rem = {0};
L2 : while (Y > 0) {
L3 : rem = IntegerDivision (X , Y);

L4 : X = Y;

L5 : Y = rem;

Lon: return X; }}
Program 4: Euclidean Division Algorithm

Fig. 2. A Graph Model of Program 4 (Euclidean Division Algorithm)

Program 4 takes two positive integers X ∈ [1,M] and Y ∈
[1,M] as the input and returns their greatest common divisor
by implementing the Euclidean Division algorithm. Note that
the MAIN function in Program 4 uses the INTEGERDIVISION
program (Program 1).

A. Global Analysis of a Graph Model

A global model can be constructed by embedding the
dynamics of the INTEGERDIVISION program within the dy-
namics of MAIN. A labeled graph model is shown in Figure 2.

This model has a state space X = N × [−M,M]
7
, where

N is the set of nodes as shown in the graph, and the
global state x = [X, Y, rem, dd, dr, q, r] is an element of
the hypercube [−M,M]

7
. A reduced graph model can be

obtained by combining the effects of consecutive transitions
and relabeling the reduced graph model accordingly. While
analysis of the full graph model is possible, working with a
reduced model is computationally advantageous. Furthermore,
mapping the properties of the reduced graph model to the
original model is algorithmic. Interested readers may consult
[75] for further elaboration on this topic.

L0 L2

L⋊⋉

F2
L0 F2 L⋊⋉

T
2
F2F2

T
1
F2F2

Π
1
F2F2

Π
2
F2F2

Fig. 3. Two reduced models of the graph model of Program 4.

For the graph model of Program 4, a reduced model can be
obtained by first eliminating nodes Fon, L4, L5, L3, F0, F1,
F3, F4, and L1, (Figure 3 (Left)) and composing the transition
and predicate labels. Node L2 can then be eliminated as well to
obtain a further reduced model with only three nodes: F2, L0,
and Lon (Figure 3 (Right)). This is the model that we analyze.
The predicate and transition labels associated with the reduced
model are as follows:

T
1

F2F2 : x 7→ [X, Y, rem, dd, dr, q + 1, r− dr]

T
2

F2F2 : x 7→ [Y, r, r, Y, r, 0, Y]

TL0F2 : x 7→ [X, Y, 0, X, Y, 0, X]

TF2Lon : x 7→ [Y, r, r, dd, dr, q, r]

Π2
F2F2 : {x | 1 ≤ r ≤ dr− 1}

Π1
F2F2 : {x | r ≥ dr} , ΠF2Lon : {x | r ≤ dr− 1, r ≤ 0}

Finally, the invariant sets that can be readily included in the
graph model are (c.f. Appendix I):

XL0 = {x | M ≥ X, M ≥ Y, X ≥ 1, Y ≥ 1} ,
XF2 = {x | dd = X, dr = Y} , XLon = {x | Y ≤ 0} .

We are interested in generating certificates of termination and
absence of overflow. First, by recursively searching for linear
invariants we are able to establish simple lower bounds on all
variables in just two rounds (the properties established in each
round are added to the model and the search is repeated). For
instance, the property X ≥ 1 is established only after Y ≥ 1 is
established. These results, which were obtained by applying
the first part of Theorem 3 (equations (24)-(25) only) with
linear functionals, are summarized in Table II.
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TABLE II
LINEAR INVARIANTS CORRESPONDING TO PROGRAM 4

Property q ≥ 0 Y ≥ 1 dr ≥ 1 rem ≥ 0 dd ≥ 1 X ≥ 1 r ≥ 0

Proven in Round I I I I II II II

σF2
(x) = −q 1− Y 1− dr −rem 1− dd 1− X −r(

θ1F2F2, µ
1
F2F2

)
(1, 1) (1, 0) (1, 0) (1, 0) (0, 0) (0, 0) (0, 0)(

θ2F2F2, µ
2
F2F2

)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

We then add these properties to the node invariant sets to
obtain stronger invariants that certify FTT and boundedness
of all variables in [−M,M]. By applying Theorem 3 and SOS
programming using YALMIP [88], the following invariants are
found2 (after post-processing, rounding the coefficients, and
reverifying):

σ1F2
(x) = 0.4 (Y −M) (2 + M− r)

σ2F2
(x) = (q×Y + r)

2 −M2

σ3F2
(x) = (q + r)

2 −M2

σ4F2 (x) = 0.1
(
Y −M + 5Y ×M + Y2 − 6M2

)
σ5F2

(x) = Y + r− 2M + Y ×M−M2

σ6F2
(x) = r×Y + Y −M2 −M

The properties proven by these invariants are summarized in
Table III. The two specifications that the program terminates,
and that x ∈ [−M,M]

7 for all initial conditions X, Y∈ [1,M] ,
could not be established in one shot, at least when trying
polynomials of degree d ≤ 4. For instance, σ1F2

certifies
boundedness of all the variables except q, while σ2F2

and
σ3F2

which certify boundedness of all variables including q
do not certify FTT. Furthermore, boundedness of some of the
variables is established in round II, relying on boundedness
properties proven in round I. Given σ (x) ≤ 0 (which is found
in round I), second round verification can be done by searching
for a strictly positive polynomial p (x) and a nonnegative
polynomial q (x) ≥ 0 satisfying:

q (x)σ (x)− p (x) (
(
Tx
)2
i
−M2) ≥ 0, T ∈ {T 1

F2F2, T
2

F2F2}
where the above inequality is further subject to boundedness
properties established in round I, as well as the usual predicate
conditions and basic invariant set conditions.

In conclusion, σ2F2
(x) or σ3F2

(x) in conjunction with
σ5F2 (x) or σ6F2 (x) prove finite-time termination of the algo-
rithm, as well as boundedness of all variables within [−M,M]
for all initial conditions X,Y ∈ [1,M] , for any M ≥ 1.
The provable bound on the number of iterations certified by
σ5F2

(x) and σ6F2
(x) is Tu = 2M2 (Corollary 2). If we settle

for more conservative specifications, e.g., x ∈ [−kM, kM]
7

for all initial conditions X,Y ∈ [1,M] and sufficiently large
k, then it is possible to prove the properties in one shot. We
show this in the next section.

B. Global Analysis of a MIL-GH Model

For comparison, we also present the MIL-GH model asso-
ciated with the reduced graph in Figure 3. The corresponding

2Different choices of polynomial degrees for the invariant functions and
the multipliers, as well as different choices for θ, µ and different rounding
schemes lead to different invariants. Note that rounding is not essential.

matrices are omitted for brevity, but details of the model along
with executable Matlab verification codes can be found in [96].
The verification theorem used in this analysis is an extension
of Theorem 2 to analysis of MIL-GHM for specific numerical
values of M, though it is certainly possible to perform this
modeling and analysis exercise with M as a parameter of the
model. The analysis using the MIL-GHM is in general more
conservative than SOS optimization over the graph model.
This can be attributed to the type of relaxations proposed (sim-
ilar to those used in Proposition 4) for analysis of MILMs and
MIL-GHMs. The benefits are simplified analysis at a typically
much lower computational cost. The certificate obtained in this
way is a single quadratic function (for each numerical value
of M), establishing a bound γ (M) satisfying

γ (M) ≥
(
X2 + Y2 + rem2 + dd2 + dr2 + q2 + r2

)1/2
Table IV summarizes the results of this analysis which were
performed using both SeDuMi [78] and LMILAB [77] solvers.

C. Modular Analysis

The preceding results were obtained by analysis of a global
model which was constructed by embedding the internal dy-
namics of the program’s functions within the global dynamics
of the Main function. In contrast, the idea in modular analysis
is to model software as the interconnection of the program’s
“building blocks” or “modules”, i.e., functions that interact via
a set of global variables. The dynamics of the functions are
then abstracted via Input/Output behavioral models, typically
constituting equality and/or inequality constraints relating the
input and output variables. In our framework, the invariant
sets of the terminal nodes of the modules (e.g., the set Xon
associated with the terminal node Fon in Program 4) provide
such I/O model. Thus, richer characterization of the invariant
sets of the terminal nodes of the modules are desirable. Cor-
rectness of each sub-module must be established separately,
while correctness of the entire program is established by
verifying the unreachability and termination properties w.r.t.
the global variables, as well as verifying that a terminal global
state will be reached in finite-time. This way, the program
variables that are private to each function are abstracted away
from the global dynamics. This approach has the potential to
greatly simplify the analysis and improve the scalability of
the proposed framework as analysis of large size computer
programs is undertaken. In this section, we apply the frame-
work to modular analysis of Program 4. Detailed analysis
of the advantages in terms of improving scalability, and the
limitations in terms of applicability and conservatism of such
analyses is an important direction for further research.

The first step is to establish correctness of the
INTEGERDIVISION module, for which we obtain:

σ7F2 (dd,dr, q, r) = (q + r)
2 −M2

The function σ7F2 is a (1, 0)-invariant proving boundedness of
the state variables of INTEGERDIVISION. Subject to bound-
edness, we obtain the function

σ8F2 (dd,dr, q, r) = 2r− 11q− 6Z
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TABLE III
RESULTS FROM ANALYSIS OF A GRAPH MODEL OF PROGRAM 4 (SECTION V-A)

Invariant σF2 (x) = σ1F2 (x) σ2F2 (x) , σ3F2 (x) σ4F2 (x) σ5F2 (x) , σ6F2 (x)(
θ1F2F2, µ

1
F2F2

)
(1, 0) (1, 0) (1, 0) (1, 1)(

θ2F2F2, µ
2
F2F2

)
(1, 0.8) (0, 0) (1, 0.7) (1, 1)

Round I: x2
i ≤ M2 for xi= Y,X, r,dr, rem,dd q,Y, dr, rem Y,X, r,dr, rem, dd Y,dr, rem

Round II: x2
i ≤ M2 for xi= X, r, dd X, r,dd

Certificate for FTT NO NO NO YES, Tu = 2M2

TABLE IV
RESULTS FROM ANALYSIS OF A MIL-GHM OF PROGRAM 4 (SECTION V-B)

M 102 103 104 105 106

Solver: LMILAB [77]: γ (M) 5.99M 6.34M 6.43M 6.49M 7.05M
Solver: SeDuMi 1 3 [78]: γ (M) 6.00M 6.34M 6.44M 6.49M NAN(

θ1F2F2, µ
1
F2F2

) (
1, 10−3

) (
1, 10−3

) (
1, 10−3

) (
1, 10−3

) (
1, 10−3

)(
θ2F2F2, µ

2
F2F2

) (
1, 10−3

) (
1, 10−3

) (
1, 10−3

) (
1, 10−3

) (
1, 10−3

)
Upperbound on iterations Tu = 2e4 Tu = 8e4 Tu = 8e5 Tu = 1.5e7 Tu = 3e9

which is a (1, 1)-invariant proving termination of
INTEGERDIVISION. The invariant set of node Fon can
thus be characterized by

Xon =
{

(dd,dr, q, r) ∈ [0,M]
4 | r ≤ dr− 1

}
The next step is construction of a global model. Given Xon, the
transition label at L3: rem← IntegerDivision (X , Y) can be
abstracted by

rem = W, subject to W ∈ [0,M] , W ≤ Y − 1,

allowing for construction of a global model with variables
X,Y, and rem, and an external state-dependent input W ∈
[0,M] , satisfying W ≤ Y − 1. The final step is analysis of
the global model. We obtain the function σ9L2 (X,Y, rem) =
Y×M−M2, which is (1, 1)-invariant proving both FTT and
boundedness of all variables within [M,M] .

VI. CONCLUDING REMARKS AND FUTURE WORK

We took a systems-theoretic approach to software analysis,
and presented a framework based on convex optimization of
Lyapunov invariants for verification of a range of important
specifications for software systems, including finite-time ter-
mination and absence of run-time errors such as overflow, out-
of-bounds array indexing, division-by-zero, and user-defined
program assertions. The verification problem is reduced to
solving a numerical optimization problem which, when fea-
sible, results in a certificate for the desired specification. The
novelty of the framework, and consequently, the main contri-
butions of this paper are in the systematic transfer of Lyapunov
functions and the associated computational techniques from
control systems to software analysis.

The proposed framework provides a constructive method,
i.e., a generic algorithm with polynomial time complexity in
the dimension of the state space of the input program, to a
provably intractable problem. As such, the framework is not
guaranteed to succeed, except for programs with relatively
simple dynamics (e.g., linear) for which a certain class of

Lyapunov functions (e.g., quadratic) are known to exist, and
relatively simple constraint structures for which convex re-
laxation techniques are provably lossless. However, similar to
converse Lyapunov theorems in stability analysis of nonlinear
dynamical systems [52], converse theorems establishing the
necessity of existence of smooth Lyapunov invariants for
proving unreachability and termination properties are within
reach. One can then hope to find these functions within
the class of polynomial or rational functions using polyno-
mial optimization techniques. Some recent progress has been
made on establishing existence of finitely-parameterized, low-
complexity polynomial Lyapunov functions for exponentially
stable systems with smooth polynomial dynamics [97]. Nev-
ertheless, theoretical results in this direction are in general
difficult to obtain for systems with more complicated dynamics
and for other forms of stability, as desired in software systems.
Naturally, our framework inherits the same difficulties, making
it even more challenging to prove generic statements about
conservativeness of the framework. The attractive feature of
the framework is its reliance on both a theory which has
demonstrated success in establishing properties of relatively
complex systems in diverse application domains, e.g., net-
works [98], systems biology [99], and engineering [84], using
relatively simple behavior certificates, and the recent advances
in numerical optimization which strengthen applications of the
theory.

The presented work can be extended in several directions.
These include understanding the power and the limitations
of modular analysis of programs, robustness analysis of the
(nominal) Lyapunov certificates to model perturbations in-
duced by round-off errors, extension to systems with software
in closed loop with hardware, and adaptation of the framework
to specific classes of software in specific applications.

APPENDIX I
CONSTRUCTION OF SIMPLE INVARIANT SETS

Simple invariant sets can be included in the model if they are
readily available or easily computable. Even trivial invariants
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can simplify the analysis and improve the chances of finding
stronger invariants via convex relaxations. Before we proceed,
we introduce the following notation: Given a semialgebraic
set Π, and a polynomial function τ : Rn 7→ Rn, we denote
by Π (τ) , the set: Π(τ) = {x | τ (x) ∈ Π} .

– Simple invariant sets may be provided by the program-
mer. These can be trivial sets representing simple alge-
braic relations between variables, or they can be compli-
cated relations that reflect the programmer’s knowledge
about functionality and behavior of the program.

– Invariant Propagation: Assuming that T kij are determin-
istic and invertible, the set

Xi =
⋃

j∈I(i), k∈Aij

Πk
ij

((
T kij
)−1)

(27)

is an invariant set for node i. Furthermore, if the invari-
ant sets Xj are strict subsets of Ωn for all j ∈ I (i) ,
then (27) can be improved. Specifically, the set

Xi =
⋃

j∈I(i), k∈Aij

Πk
ij

((
T kij
)−1) ∩Xj

((
T kij
)−1)

is an invariant set for node i. Note that it is sufficient that
the restriction of T kij to the lower dimensional spaces in
the domains of Πk

ij and Xj be invertible.
– Preserving Equality Constraints: Simple assignments of

the form T kij : xl 7→ f (xm) result in invariant sets
at node i, of the form Xi = {x | xl − f (xm) = 0},
provided that T kij does not simultaneously update xm.
Formally, let T kij be such that (T kijx)l − xl is non-zero
for at most one element l̂ ∈ Z (1, n) , and that (T kijx)l̂
is independent of xl̂. Then, the following set:

Xi =
⋃

j∈I(i), k∈Aij

{
x |

[
T kij − I

]
x = 0

}
,

is an invariant set at node i.

APPENDIX II

Proof of Theorem 1: Assume that S has a solution
X=(x (0) , ..., x (t−) , ...) , where x (0) ∈ X0 and x (t−) ∈
X−. Let

γh = inf
x∈h−1(X−)

V (x)

First, we claim that γh ≤ max {V (x (t−)), V (x (t− − 1))} .
If h = I, we have x (t−) ∈ h−1 (X−) and γh ≤ V (x (t−)).
If h = f, we have x (t− − 1) ∈ h−1 (X−) and γh ≤
V (x (t− − 1)), hence the claim. Now, consider the θ = 1
case. Since V is monotonically decreasing along solutions of
S, we must have:

γh = inf
x∈h−1(X−)

V (x) ≤ max {V (x (t−)), V (x (t− − 1))}

≤ V (x (0)) ≤ sup
x∈X0

V (x) (28)

which contradicts (11). Note that if µ > 0 and h = I, then
(28) holds as a strict inequality and we can replace (11) with
its non-strict version. Next, consider case (I) , for which, V
need not be monotonic along the trajectories. Partition X0 into
two subsets X0 and X0 such that X0 = X0 ∪X0 and
V (x) ≤ 0 ∀x ∈ X0, and V (x) > 0 ∀x ∈ X0

Now, assume that S has a solution X= (x (0) , ..., x (t−) , ...) ,
where x (0) ∈ X0 and x (t−) ∈ X−. Since V (x (0)) > 0 and
θ < 1, we have V (x (t)) < V (x (0)) , ∀t > 0. Therefore,

γh = inf
x∈h−1(X−)

V (x) ≤ max {V (x (t−)), V (x (t− − 1))}

≤ V (x (0)) ≤ sup
x∈X0

V (x)

which contradicts (11). Next, assume that S has a solution
X= (x (0) , ..., x (t−) , ...) , where x (0) ∈ X0 and x (t−) ∈
X−. In this case, regardless of the value of θ, we must
have V (x (t)) ≤ 0, ∀t, implying that γh ≤ 0, and hence,
contradicting (12). Note that if h = I and either µ > 0,
or θ > 0, then (12) can be replaced with its non-strict
version. Finally, consider case (II). Due to (13), V is strictly
monotonically decreasing along the solutions of S. The rest
of the argument is similar to the θ = 1 case.

Proof of Corollary 1: It follows from (15) and the
definition of X− that:

V (x) ≥ sup
{∥∥α−1h (x)

∥∥
q
− 1
}

≥ sup
{∥∥α−1h (x)

∥∥
∞ − 1

}
> 0, ∀x ∈ X. (29)

It then follows from (29) and (14) that:

inf
x∈h−1(X−)

V (x) > 0 ≥ sup
x∈X0

V (x)

Hence, the first statement of the Corollary follows from
Theorem 1. The upperbound on the number of iter-
ations follows from Proposition 3 and the fact that
supx∈X\{X−∪X∞} |V (x)| ≤ 1.

Proof of Corollary 2: The unreachability property follows
directly from Theorem 1. The finite time termination property
holds because it follows from (6), (17) and (20c) along with
Proposition 3, that the maximum number of iterations around
every simple cycle C is finite. The upperbound on the number
of iterations is the sum of the maximum number of iterations
over every simple cycle.

Proof of Proposition 4: Define xe = (x,w, v, 1)
T
, where

x ∈ [−1, 1]
n
, w ∈ [−1, 1]

nw , v ∈ {−1, 1}nv . Recall that
(x, 1)

T
= L2xe, and that for all xe satisfying Hxe = 0,

there holds: (x+, 1) = (Fxe, 1) = L1xe. It follows from
Proposition 2 that (4) holds if:

xTe L
T
1 PL1xe − θxTe LT2 PL2xe ≤ −µ, for all xe such that:

Hxe = 0, L3xe ∈ [−1, 1]
n+nw , L4xe ∈ {−1, 1}nv . (30)

Recall from the S-Procedure (Sec. IV-A2a) that the assertion
σ (y) ≤ 0, ∀y ∈ [−1, 1]

n holds if there exist nonnegative con-
stants τi ≥ 0, i = 1, ..., n, such that σ (y) ≤∑ τi

(
y2i − 1

)
=

yT τy − Trace (τ) , where τ = diag {τi} � 0. Similarly,
the assertion σ (y) ≤ 0,∀y ∈ {−1, 1}n holds if there exist
constants ρi such that σ (y) ≤ ∑

ρi
(
y2i − 1

)
= yT ρy −

Trace (ρ) , where ρ = diag {ρi} . Applying these relaxations
to (30), we obtain sufficient conditions for (30) to hold:

xTe L
T
1 PL1xe − θxTe LT2 PL2xe ≤ xTe

(
Y H +HTY T

)
xe+

xTe L
T
3DxwL3xe + xTe L

T
4DvL4xe − µ− Trace(Dxw +Dv)

Together with Dxw � 0, the above condition is equivalent to
the LMIs in Proposition 4.
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