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Abstract The paper examines the value of ramp-constrained storage in se-
curing reliability and mitigating risk in energy systems with uncertain supply
and demand, and friction in the main supply source. Reliability is defined as
the expected discounted cost of energy deficits over an infinite horizon, whereas
risk is defined as the probability of incurring a large energy deficit. The nomi-
nal supply and demand are assumed to match perfectly, while deviations from
the nominal values are modeled as random shocks with stochastic arrivals.
Due to friction, the random shocks cannot be tracked by the main supply
sources. Storage, on the other hand, is assumed frictionless as a supply source
and can be used to compensate for the energy deficit shocks, though it cannot
be filled up instantaneously. The storage control problem is formulated as an
optimal control problem with the objective of maximizing system reliability.
It is shown that when the stage cost is linear in the size of the energy deficit,
the optimal control policy is myopic in the sense that all deficit shocks will
be compensated up to the available level of storage. However, when the stage
cost is strictly convex, it may be optimal to accept a small energy deficit in
the interest of maintaining a higher level of reserve, which can help avoiding a
large energy deficit in the future. The value of storage capacity in improving
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reliability, as well as the effects of the associated optimal policies under dif-
ferent stage costs on risk, i.e., the tail distribution of large energy deficits are
examined.

Keywords Storage, Ramp Constraints, Reliability, Probability of Large
Energy Deficits

1 Introduction

Supply and demand in energy systems are subject to exogenous and unpre-
dictable shocks due to failure of generators or transmission equipment, or
unexpected changes in weather conditions. In addition, energy systems in the
United States and around the globe are moving towards integration of dis-
tributed and renewable energy resources at a large scale. Due to the volatile
and intermittent nature of these resources, this trend is likely to increase the
magnitude and frequency of impulsive supply shocks in energy networks. We
are interested in understanding the value of storage capacity in improving the
reliability of a system with volatile supply and demand, the limitations that
cannot be overcome by additional storage capacity due to physical ramp con-
straints, and finally, the impacts of different control and pricing policies on
system reliability and risk.

Formally, we define reliability as the expected infinite-horizon discounted
cost of energy deficits. We will also refer to this reliability metric as the cost of
energy deficit (CED) metric. The reliability value of storage is in turn defined
as the maximal (i.e., under the optimal policy) relative improvement in system
reliability for a given storage capacity. Another metric of interest in this paper
is risk, defined as the probability of incurring an uncompensated energy deficit
larger than a certain threshold1. We derive the associated optimal policies and
characterize the improvement in system reliability as a function of storage
capacity, and then qualitatively examine the effects of different policies on risk
in the system.

We consider an abstract model of a system consisting of renewable gener-
ation, conventional generation, and storage. The system is subject to random
arrivals of energy deficit shocks, due to defaults by the renewable generation or
unexpected surges in the demand. It is assumed that the conventional gener-
ator is relatively slow and cannot ramp up fast enough to cover for the energy
deficit shocks. The storage has finite capacity and a ramp constraint on charg-
ing, but no constraint on discharging. Thus, it may be used to partially or
completely mask the shocks to avoid energy deficits or supply deficits. Note
that this specific model of storage approximates very well the charge and dis-
charge characteristics of various electricity storage technologies [1] including

1 This metric is closely related to the popular notion of Loss of Load Probability (LOLP)
[19] widely used in the energy systems literature. LOLP generally refers to the probability
that supply will be insufficient to meet the demand. We adopt the notion of risk to emphasize
the events that supply deficits would be relatively large.
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pumped hydro, certain battery technologies, and the grid inertia. The key fea-
ture of this approximate model is that a significant amount of energy can be
extracted in a short period of time, while it takes time to restore the consumed
energy. Even though our model is relatively abstract simplification of the real
energy systems, it helps gain insight on the effect of different control policies
on the reliability of energy. Moreover, its simplicity allows us to provide some
analytical characterization of the optimal control policies for operating energy
storage systems together with volatile energy sources.

Conventional 
generation (slow) 

Storage (fast) 

Intermittent renewable 

virtual power plant Fig. 1 A virtual power plant consisting of energy storage, renewable generation, and con-
ventional generation.

This model can be interpreted in at least two different ways. The first is
the model of a Virtual Power Plant (VPP). A VPP consists of an aggregation
of several distributed energy resources, possibly in coalition with conventional
generators, with the goal of participating in the energy market as a reliable
and more profitable supply source [7]. In our model, the VPP consists of
storage and both renewable and conventional generators (Figure 1). The VPP
commits to supplying a certain amount of power in the market over a certain
time period, and its deviations from its commitment are penalized according
to a predetermined pricing scheme imposed by the system operator or the
regulator. The VPP’s problem is then how to optimally utilize the storage in
order to minimize the expected cost of these deviations in the long run. This
coincides with our notion of reliability maximization.

The second interpretation of the model corresponds to an abstract model
of an energy system as a whole. In this case, the storage is owned and operated
by the system operator whose objective is to maximize the reliability of the
entire system. The storage in this scenario may be interpreted as a physical
component (e.g., battery, flywheel, or pumped hydro) connected to the grid,
or, the system inertia, i.e., the kinetic energy of the conventional generators
in an energy system. In section 2, we will present a problem formulation that
abstractly encompasses all these interpretations.
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Recent works [9], [13] have examined the economic value of ramp-constrained
storage as an arbitrage mechanism in the energy market. Several other works
have used similar abstract models of storage in different settings, to exam-
ine optimal/sub-optimal policies and the associated value of ramp-constrained
storage in the presence of renewable resources from a combination of economic,
reliability, and welfare efficiency perspectives [23], [24], [4] and [14]. Herein, our
focus is on reliability (and risk), acknowledging that the economic and relia-
bility values are not completely separable. By abstracting away factors such
as the environment, the amount of renewable energy curtailed, price of energy
or cost of storage, we characterize the value of storage purely from reliabil-
ity and risk perspectives. A limitation of our model, however, is the absence
of power flow and transmission line constraints, which in practice, contribute
significantly to system reliability and the feasibility of satisfying the demand.

Prior research on sizing and characterization of the value of storage for
system reliability in energy systems has been reported in [17], [18], [24], [22],
[5], [6] and [12]. Particularly, [12] takes a time-series analysis approach to
demonstrate that a combination of wind, natural gas and fast ramping energy
storage can be used to generate regulated levels of power at a reasonable cost.
Also related to our model is the production-storage system studied in [15],
where the authors characterize the relaiability of the system under myopic
control policies with applications in petrochemical industry. Our paper and
[5] and [6] use similar queueing models, though our work is different in many
ways. We assume that the storage capacity is fixed and find the optimal policy
for withdrawing from storage, as opposed to fixing the policy and optimizing
capacity. Another difference is that our model of uncertainty is a compound
poisson process instead of the brownian motion model used in [5], [6]. Similar
models and concepts exist in the queueing theory literature [11], [16], though
with different application contexts.

We formulate the problem of optimal storage management as the problem
of minimization of the CED metric, and provide several characterizations of
the value function, as well as the structural properties of the associated optimal
policy. We prove that for a linear stage cost, a myopic policy that drains storage
to compensate for all shocks, regardless of their size, is optimal. However, for
nonlinear stage costs where the penalty for larger energy deficits is significantly
higher, the optimal policy allows for more frequent small energy deficits in
order to avoid large energy deficits. Our results show that due to the ramp
constraint, the value of storage saturates quickly as a function of capacity,
and even more quickly for higher levels of volatility. Furthermore, for a given
fixed capacity of storage, the value decreases as volatility increases. Finally, we
investigate the effect of storage size on the probability of large energy deficits.
We observe that for all control policies, there appears to be a critical level of
storage size, above which the probability of large energy deficits diminishes
quickly.
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Notation 1 Throughout the paper, IA denotes the indicator function of a set
A. The operator [x]+ = max{0, x} is the projection operator onto the nonneg-
ative orthant.

2 The Model

The details of the model are outlined below.

2.1 Generation

2.1.1 Conventional Generator

The output of the conventional generator is assumed to be controllable, and
the controlled generation process is denoted by G = {Gt : t ≥ 0}, where Gt is
the power output at time t ≥ 0. It is assumed that the power output is subject
to an upward ramp constraint and cannot increase instantaneously:

Gt −Gt′
t− t′ ≤ ζ, ∀t : 0 ≤ t < t′.

In this paper, we are interested only in energy deficits for serving the load, not
in energy excesses from too much production. Therefore, we do not assume a
downward ramp constraint on Gt.

2.1.2 Renewable Generator

The renewable generation process is denoted by R = {Rt : t ≥ 0}. It is
assumed that R can be modeled as a process with two components: R =
R + ∆R, where R = {Rt : t ≥ 0} is a deterministic process representing the
predicted renewable supply, and ∆R = {∆Rt : t ≥ 0} is the residual supply
assumed to be a random arrival process. Thus, at any given time t ≥ 0, the
total forecast supply from the renewable and controllable generators is given
by Gt +Rt.

2.2 Demand

The demand process is denoted by D = {Dt : t ≥ 0}, where Dt is the total
power demand at time t, assumed to be exogenous and inelastic. Similar to the
renewable supply, D has two components: D = D+∆D, where D = {Dt : t ≥
0} is the predicted demand process (deterministic), and ∆D = {∆Dt : t ≥ 0}
is the residual demand, again, assumed to be a random arrival process.
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2.3 Storage

The storage process is denoted by s = {st ∈ [0, s] : t ≥ 0}, where st is the
amount of stored energy at time t, and s < ∞ is the storage capacity. The
storage technology is subject to an upward ramp constraint:

st − st′
t− t′ ≤ r, ∀t : 0 ≤ t < t′.

Thus, storage can be used to supply a large amount of energy instantaneously,
though the consumed energy cannot be restored instantaneously.

2.4 Problem Formulation

In this section we present the problem formulation in terms of an energy
imbalance process2. Before we proceed, we introduce a few assumptions and
definitions.

Assumption 1 The forecast supply is equal to the forecast demand. That is:
Dt = Gt +Rt, for all t ≥ 0.

Assumption 1 is a natural assumption which states that the forecast de-
mand is equal to sum of the forecast supply from the renewable resource and
the deterministically scheduled supply from the conventional generator. Any
imbalance in the system would come from the real-time deviations of demand
and renewable generation processes from their forecast, which may be com-
pensated from storage.

Definition 1 The power imbalance is defined as the residual demand minus
the residual supply:

∆Pt = ∆Dt −∆Rt. (1)

The normalized energy imbalance is defined as:

Wt =
∆P 2

t

2ζ
. (2)

Assumption 2 The normalized energy imbalance process (2) is the jump pro-
cess in a compound poisson process with arrival rate Q and jump size distribu-
tion fW , where the support of fW lies within a bounded interval [0, B], where
B is the maximum deficit that might be incurred in a single shock.

2 We refer to the event of not meeting the demand as an energy deficit event, and will
use the terms energy deficit and energy imbalance interchangeably.
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ΔP(t)

t

t

W (t)

Fig. 2 In the absence of storage, a power imbalance of ∆Pt results in an energy shock of
Wt = ∆P 2

t /2ζ, due to the ramp constraint ζ of the conventional generator. It is assumed
that the energy imbalance process can be approximated with a compound Poisson process.

Remark 1 The main intuition behind adopting Assumption 2 for modeling
deviations from the nominal (or predicted) trajectory is that smooth deviations
can be tracked by the embedded power systems controls (e.g. primary and
secondary control) very well. It is the abrupt and large shocks (e.g. loss of a
generator or an impulsive change in renewable generation/demand) that is not
predictable, cannot be tracked/compensated by slow conventional generation,
and requires a fast response that storage could provide. A compound Poisson
process is one way to model such phenomena. Compound Poisson processes or
their variations have been used in the energy systems literature for modeling
electricity price processes in power networks (see, e.g., [21], pages 150 and
216, and the references therein). If we accept prices as a reasonable proxy for
the underlying state of the system, these models provide another justification
for using compound Poisson processes as a reasonable model for impulsive
disturbances that affect the system.

The objective is to design a feasible control policy µ : [0, s̄]× [0, B] 7→ [0, s̄],
which maps the state of charge and shock size to the amount of energy to be
withdrawn from storage, to maximize the system’s reliability. Under Assump-
tions 1 and 2, the dynamics of the storage process can be written as:

st = s0 +

∫ t

0

I{sτ<s}rdτ −
∫ t

0

µ (sτ− ,Wτ ) dNτ (3)

where Nt is a Poisson process of rate Q, and Wt is the jump size (energy
imbalance) process, drawn independently and identically from a distribution
fW . The term sτ− denotes the left limit of the storage process at time τ . Here,
both Nt and Wt are assumed to be cádlág, i.e., right continuous with left limits.
Since the Poisson process model of the energy imbalance process is stationary
and memoryless, we focus on stationary Markov policies. We denote the set of
all feasible stationary Markovian policies by Π, noting that any feasible policy
µ(s, w) must satisfy µ(s, w) ≤ s.
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Let Cµ(s) denote the expected discounted cost of energy deficits under
control policy µ, and starting from an initial state s:

Cµ(s) = E

[ ∫ ∞
0

e−θτg (Wτ − Uτ ) dNτ

∣∣∣s0 = s

]
= E

[ ∞∑
k=1

e−θtkg
(
Wk − µ(st−k

,Wk)
) ∣∣∣s0 = s

]
, (4)

where tk is the k-th Poission arrival time, and Wk = Wtk is size of the k-th
jump, and θ > 0 is the discount rate. Moreover, g : [0, B] → R is the stage
cost as a function of energy imbalance. In this paper, we assume that the stage
cost function satisfies certain properties as described in Assumption 3.

Assumption 3 The stage cost function g(·) is bounded, strictly increasing
and continuously differentiable. Moreover, E[g(W )] > 0, and g(0) = 0.

The reliability maximization problem can now be formulated as an infinite
horizon stochastic optimal control problem

Cµ(s)→ min
µ∈Π

(5)

where the optimization problem (5) is subject to the state dynamics (3). A
policy µ∗ ∈ Π is defined to be optimal if

µ∗ ∈ arg min
µ∈Π

Cµ(s).

The associated value function or optimal cost function is denoted by C(s):

C(s) = min
µ∈Π

Cµ(s), 0 ≤ s ≤ s̄. (6)

3 Characterization of The Value Function and the Associated
Optimal Policy

3.1 Characterizations of the Value Function

We first provide several characterizations for the value function defined in
(6) and establish specific properties that are useful in characterization of the
optimal policy.

Let Jµ(s, w) be the expected cost under policy µ, conditioned on the first
jump arriving at time t1 = 0, and being of size w. Here, s is the state of
the system just before executing the action dictated by the policy. By the
memoryless property of the Poisson process, we have

Jµ(s, w) = g(w − µ(s, w))

+E
[ ∞∑
k=1

e−θtkg(Wk − µ(st−k
,Wk))

∣∣∣s0 = s− µ(s, w)
]

(7)
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We may relate Jµ(s,W ) to the total expected cost Cµ(s) defined in (4) as
follows:

Cµ(s) = E
[
e−θt0Jµ(min{s+ rt0, s̄},W )

]
, (8)

where t0 is an exponential random variable with mean 1/Q, and is independent
of W , drawn from distribution fW .

From (8), it is clear that by minimizing Jµ (given in (7)) across all admis-
sible policies, we can obtain the optimal solution to the original problem (5).
The discrete-time formulation of Jµ given in (7) facilitates deriving the nec-
essary and sufficient optimality condition, as well as development of efficient
numerical methods. We summarize these results in the following theorem.

Theorem 1 Given an admissible control policy µ ∈ Π, let Jµ : [0, s]×[0, B] 7→
R be the function defined in (7). A function J : [0, s]× [0, B] 7→ R satisfies

J(s, w) = J∗(s, w)
def
= min

µ∈Π
Jµ(s, w), ∀(s, w),

if and only if it satisfies the following fixed-point equation:

J(s, w)=(TJ)(s, w)
def
= min

u∈[0,min{s,w}]

{
g(w − u)

+ E
[
e−θt0J

(
min{s− u+ rt0, s̄},W

)]}
. (9)

Moreover, a stationary policy µ∗(s, w) is optimal if and only if u = µ∗(s, w)
achieves the minimum in (9) for J = J∗. Finally, the value iteration algorithm

Jk+1 = TJk, (10)

converges to J∗ for any initial condition J0.

Proof The result follows from establishing the contraction property of T , which
is straightforward in this case due to bounded stage and discounted cost. See
[3] for more details.

While Theorem 1 provides the basis for numerical computation of the opti-
mal cost function and optimal policy, we can derive further analytical charac-
terizations of the optimal policy based on continuous-time analysis of problem
(5), which leads to the Hamilton-Jacobi-Bellman (HJB) equation [20]. In the
following theorem, we present some basic properties of the optimal cost func-
tion. We present the proofs of the following theorems in the Appendix.

Theorem 2 Let C(s) be the optimal cost function defined in (6). The follow-
ing statements hold:

(i) C(s) is strictly decreasing in s.

(ii) If the stage cost g(·) is convex, the optimal cost function C(s) is also
convex in s.



10 ParandehGheibi, Roozbehani, et. al.

(iii) If C(·) is continuously differentiable, then for all s ∈ [0, s̄], it satisfies the
following HJB equation

dC(s)

ds
=
Q+ θ

r
C(s)− Q

r
E
[

min
u∈[0,min {s,W}]

g(W − u) + C(s− u)
]
, (11)

with the boundary condition

dC

ds

∣∣∣
s=s̄

= 0. (12)

Moreover, the optimal policy µ∗(s, w) achieves the optimal solution of the mini-
mization problem in (11). Furthermore, for a given policy µ, if the cost function
Cµ(s) is differentiable, it satisfies the following differential equation

dCµ
ds

=
Q+ θ

r
Cµ(s)

− Q

r
E
[
g(W − µ(s,W )) + Cµ(s− µ(s,W ))

]
, (13)

with the boundary condition (12).

The result of Theorem 2 part (iii) requires continuous differentiability of
the optimal cost function, which can be established under some mild condi-
tions such as differentiability of the stage cost function g and the probability
density function fW (·) of Poisson jumps (cf. Benveniste and Scheinkman [2]).
Throughout this paper, we assume that C(s) is continuously differentiable and
the results of Theorem 2 are applicable.

3.2 Characterizations of the Optimal Policy

In this subsection, we derive some structural properties of the optimal policy
using the optimal cost characterizations given in Theorems 1 and 2. First, we
show that the myopic policy of allocating reserve energy from storage to cover
as much of every shock as possible is optimal for linear stage cost functions.
Then, we give a partial characterization of the structure of the optimal policy
for strictly convex stage cost functions.

Theorem 3 If the stage cost is linear, i.e., g(x) = βx for some β > 0, then
the myopic policy

µ∗(s, w) = min{s, w}, (14)

is optimal for problem (5).

We will see in Section 4 that the myopic policy (14) results in a higher
probability of large energy deficits. Intuitively, the myopic policy greedily con-
sumes the reserve, and thereby increases the chances of having little or no
energy in reserve when facing a large supply shock. In the linear stage cost
case, the penalty for a large energy deficit is equivalent to the total penalty of
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many small energy deficits. This is unlike the strictly convex case. Therefore,
the optimal policy for the strictly convex case tends to be more conservative
in consuming the reserve.

Next, we focus on strictly convex stage cost functions, and present some
characterizations of the structural properties of the optimal policy using the
results derived within Section 3.1. Before we proceed, we introduce a definition.

Definition 2 The drift of the storage process is the ramp rate of storage
minus the rate of the compound Poisson process, and is denoted by δ:

δ = r −QE[W ]. (15)

Theorem 4 Let µ∗(s, w) be the optimal policy associated with problem (5).
If δ ≥ 0, i.e., if the storage process has nonnegative drift, then µ∗(s, w) is
monotonically nondecreasing in both s and w.

Theorem 5 Let µ∗(s, w) denote the optimal policy associated with problem
(5) with strictly convex stage cost g(·). There exists a unique kernel function
φ : [−B, s̄]→ R such that

µ∗(s, w) =
[
w − φ(s− w)

]+
, ∀(s, w) ∈ [0, s̄]× [0, B], (16)

where,

φ (p) = arg min
x

g (x) + C (x+ p) (17)

s.t. x ≤ min {B, s̄− p}
x ≥ max {0,−p}

Moreover, if δ ≥ 0, the kernel function φ(·) can be represented as follows:

φ(p) =


−p, −B ≤ p ≤ b0
φ◦(p), b0 ≤ p ≤ b1
0, b1 ≤ p ≤ s̄,

(18)

where φ◦(p) is the unique solution of

g′(x) + C ′(x+ p) = 0, (19)

and b0 and b1 are the break-points, where

b0 = −(g′)−1
(
− C ′(0)

)
≥ −(g′)−1

(Q
r

E[g(W )]
)
≥ −B, (20)

b1 = (C ′)−1
(
− g′(0)

)
≤ s̄. (21)
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Fig. 3 Structure of the kernel function φ(p) defined in (17).

Myopic	  policy	  
	  

Op*mal	  Policy	  

Fig. 4 Structure of the optimal policy µ∗(s, w) for a convex stage cost, for two different
shock sizes w1 and w2, where w2 < w1. For comparison, the myopic policy is shown in
green.

Theorem 5 reveals a very special structure for the optimal policy. In fact,
it shows that the two dimensional policy can be represented using a single
dimensional kernel function. This result allows us to significantly reduce the
computational complexity of various simulations presented in Section 4. In
addition, using Theorem 5, we can provide a qualitative picture of the structure
of the optimal policy. Figures 3 and 4 illustrate a conceptual plot of the kernel
function, and the optimal policy, respectively.

In particular, for all (s, w) ∈ [0, s̄] × [0, B], we can summarize the charac-
terization of the optimal policy as follows. If w ≥ −b0, we have

µ∗(s, w) =

 s, 0 ≤ s ≤ s0(w)
w − φ◦(s− w), s0(w) ≤ s ≤ s1(w)
w, s1(w) ≤ s,

(22)
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where si(w) = w + bi for i = 0, 1. For w ≤ −b0, we have

µ∗(s, w) =

0, 0 ≤ s ≤ q0(w)
w − φ◦(s− w), q0(w) ≤ s ≤ s1(w)
w, s1(w) ≤ s,

(23)

where q0(w) is the unique solution of φ◦(s− w) = w. Note that µ∗(s, w) may
never achieve the value w, if s1(w) > s̄.

The interpretation of this optimal policy which is schematically shown
in Figure 4 is as follows. First, it is possible to have µ∗(s, w) < min{s, w},
implying that it is better to afford a small deviation penalty in the present to
avoid a large energy deficit in the future. On the other hand, we observe that
µ∗(s, w) = w for s > s1(w). This makes intuitive sense since it implies that
if there is sufficiently large reserve in the system, it is optimal to cover the
supply shock by withdrawing from storage. For a relatively small shock size
(e.g., w2 in Figure 4), no action will be taken, unless the storage state is above a
certain threshold q0(w2). For a larger shock size (e.g., w1), we have q0(w1) = 0,
implying that always some energy will be withdrawn from storage, regardless
of its state. It is optimal to fully drain the storage up to another threshold
s0(w1). The most interesting case is exactly the middle range (between q0(w)
and s1(w) for small shocks and between s0(w) and s1(w) for larger shocks).
In this regime, we have 0 < µ∗(s, w) < min{s, w}, meaning that we accept
partial energy deficit so as to not drain the storage too much, and be left more
vulnerable to future shocks.

4 Numerical Simulations

In this section, we use numerical simulations to study the effect of storage size
and volatility on system reliability and risk. We use the value iteration algo-
rithm (10) to compute the optimal policy and cost function for nonlinear stage
costs. Figures 5 illustrates the optimal policy in a scenario with uniformly dis-
tributed random jumps and quadratic stage cost. Note that the structure of
the actual optimal policy (Figure 5) conforms with the structure derived based
on analytical results of Theorem 5, shown in Figure 4. The computational pro-
cedure for finding the optimal policy is used for further simulations discussed
below.

4.1 Reliability Value

Figures 6 and 7 show the value of storage—defined as the normalized im-
provement in expected cost as a function of storage size—for different Poisson
arrival rates. In these simulations we have θ = 0.01, r = 1, and W = 1.
In Figure 7 we have a cubic stage cost, while in Figure 6 the stage cost is
quadratic. We observe that while adding a small amount of storage improves
reliability significantly, the value saturates quickly as a function of storage
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storage state and the vertical axis is the amount of energy to be withdrawn in response to
a shock. The different curves correspond to different shock sizes.
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Fig. 6 Value of storage as a function of the storage capacity for cubic stage cost, different
Poisson arrival rates, r = 1, and deterministic jumps size W = 1. c(s; s̄) denotes the optimal
cost function c(s) (c.f. Equation (6)) when the storage capacity is given by s̄.

capacity. Moreover, the value of storage is lower for higher levels of volatil-
ity, i.e., high arrival rates of shocks. Similar behavior is observed in extensive
simulations that point us to the qualitative conclusions that a relatively small
amount of storage provides most of the reliability value, and that as volatility
in the system increases, the reliability value of storage decreases. Beyond a
certain limit of storage capacity, it is only faster storage technology that helps
improve reliability, not additional storage capacity of the same technology.

To examine the effects of different ramp rates, and different levels of volatil-
ity on reliability value of storage, we performed another set of simulations with
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Fig. 8 Simulation results for optimal sizing. Here, we have deterministic shocks with jump
size W = 1, while s∗ denotes the capacity that achieves 90% of the reliability value. We
observe that s∗ is largest when Q = r, i.e., when the storage has zero drift: δ = r−QE[W ] =
0.

the results presented in Figures 8 and 9. We define s∗ to be the amount of
storage capacity that achieves 90% of the maximum reliability value, and ex-
amine the value of s∗ as a function of system parameters. In the first case
(Figure 8), we set W = 1 and examine s∗ as a function of the arrival rate Q
and ramp rate r. In the second case (Figure 9), we set r = 1 and examine s∗ as
a function of the arrival rate Q and shock size W . The interesting observation
is that maximum storage capacity corresponds to the case where the storage
has zero drift: δ = r − QE[W ] = 0. In other words, when we are optimizing
storage capacity in order to improve system reliability, systems with zero drift
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Fig. 9 Simulation results for optimal sizing. Here, we have the ramp rate r = 1, while s∗

denotes the capacity that achieves 90% of the reliability value. We observe that s∗ is largest
when QW = 1, i.e., when the storage has zero drift: δ = r −QE[W ] = 0.

would be associated with the highest amount of storage capacity. The intuition
is as follows. If the drift is positive, volatility is relatively low and a smaller
amount of storage achieves most of the value, because, in some sense, storage
is always full and available. On the other hand, when the drift is negative, the
value of more capacity diminishes because of high volatility which prevents
restoring energy. This has a strong implication for system design. Optimal
sizing of storage should be for a target level of volatility. If volatility changes
drastically from the target volatility then the value of storage capacity may
decrease significantly.

4.2 Energy Deficit Statistics and Risk

In this section, we study the effect of different optimal policies associated
with different stage costs on the probability distribution of energy deficits,
and particularly, the risk of large energy deficits. Figure 10 shows the energy
imbalance distribution in a scenario with deterministic jumps of unit size,
for both myopic policy and the optimal policy for a quadratic cost function.
Figure 11 shows the energy deficit distribution for the same system but for
cubic stage cost. Note that, the stage cost for the non-myopic policy assigns a
significantly higher weight to larger energy deficits. Therefore, as we can see in
Figures 10 and 11, the non-myopic policy results in less frequent large energy
deficits at the cost of more frequent small energy deficits. The same trend is
observed between the statistics of energy deficit events under quadratic and
cubic stage costs. In conclusion, the rate of growth of the stage cost determines
the statics of the energy deficits. The faster the growth of the cost as a function
of storage size, the smaller the probability of large energy imbalances will be.
This reduction in risk is achieved at the cost of a higher probability of small
energy deficits.



The Value of Storage in Securing Reliability and Mitigating Risk 17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

energy deficit size
 

 
Optimal policy (g(x) = x2)
Myopic policy

Fig. 10 Energy deficit distribution comparison of myopic and non-myopic policies for
quadratic stage costs. Deterministic jumps with W = 1 and rate Q = 0.8.
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Fig. 11 Energy deficit distribution comparison of myopic and non-myopic policies for cubic
stage cost. Deterministic jumps with W = 1 and rate Q = 0.8.

Finally, we look at the effect of storage size on the risk of incurring large
energy deficits. Figure 12 plots this risk metric for different policies that are all
optimal for different stage cost functions. Here, we observe a sharp improve-
ment in risk mitigation at a critical level of storage capacity. This critical level
is higher (near the maximum shock size) for the myopic policy and much lower
(near the average shock size) for the quadratic and cubic policies. This is con-
sistent with the previous simulations on the reliability value, and leads to the
qualitative conclusion that a relatively small amount of storage provides most
of the value both in terms of improving reliability and mitigating risk.
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Fig. 12 Probability of large energy deficits as a function of storage size for different policies
(uniformly distributed jump W = U [0, 1] and rate Q = 1).

5 Summary and Concluding Remarks

We examined the value of storage in a system with uncertainty in supply/demand,
and upward ramp constraints for both conventional generation and charging of
storage. The uncertainty was modeled as a compound poisson arrival of energy
deficit shocks. We formulated the problem of maximization of system reliabil-
ity as the problem of minimization of the infinite horizon expected discounted
cost of energy deficits over all stationary Markovian policies. We showed that
for a linear stage cost, a myopic policy which uses storage to compensate for
all shocks regardless of their size is optimal. However, for strictly convex stage
costs it maybe optimal to incur a small energy imbalance in order to avoid a
large energy deficits in the future. An interpretation of this result is that at-
tempting to mitigate all small energy deficits increases the probability of large
energy deficits. We also showed that the reliability value of storage saturates
quickly as a function of storage capacity, and beyond a certain level, it is only
faster storage that can bring more value for the system, not more capacity
with the same technology. Another interesting observation is the sensitivity of
the optimal storage size that achieves most of the reliability value to the drift
of the storage process. In a system with zero drift, storage is of the most value
and more capacity will be integrated in an optimally designed system. How-
ever, deviations from the zero drift scenario drastically diminish the value of
storage capacity. Thus, optimal sizing of storage must be based on a carefully
calculated target level of volatility. Finally, Our results suggest that for all
control policies, there seems to be a critical level of storage size, above which
the probability of suffering large energy deficits diminishes quickly. This level
is higher for the myopic policy and lower for optimal policies with strictly
convex stage costs.
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Our results have important implications on different aspects of planing,
design, and operation of energy systems. For instance, in designing market
mechanisms for Virtual Power Plants (VPPs), the system operator can ex-
pect infrequent but large deviations from the scheduled output of VPP if the
output deviation penalty is linear in the size of deviation, whereas, a pricing
mechanism that grows nonlinearly in the size of the deviation, will result in
more frequent but smaller deviations. The system operator can then choose
the desired tradeoff based on the available reserve technologies, and their cost.
An interesting direction for future research would be to model and examine
the effects of power flow and transmission network constraints on the value of
storage.

A Appendix

Proof of Theorem 2: Part (i): The monotonicity property of the value function follows
almost immediately from the definition. Let 0 ≤ s1 < s2 ≤ s̄, and assume C(s) = Cµ(s)

for some policy µ. Given the initial state s1, let u
(1)
t be the control process under policy µ.

Note that for every realization ω of the compound Poisson process, the sample path u
(1)
t (ω)

is admissible for initial condition s2 > s1. Therefore, by definitions (4) and (6), we have
C(s2) ≤ C(s1).

In order to show the strict monotonicity, consider the controlled process starting from

s1. Let τ be the first arrival time such that g(Wτ − u(1)
τ ) > 0. By Assumption 3, we have

P(τ ∈ [0, T ]) > 0 for some T <∞. For every sample path ω, define the control process

u
(2)
t (ω) = u

(1)
t (ω) + δ · I{t=τ(ω)},

for some δ > 0 such that δ ≤ min{s2 − s1,Wτ(ω) − u
(1)
τ(ω)
}.

It is clear that u
(2)
t (ω) is admissible for the controlled process starting from s2. Using

the definition of the expected cost function in (4), we can write

C(s1)− C(s2) ≥ Eω [e−θτ(ω)g(Wτ(ω) − u
(1)
τ(ω)

)− e−θτ(ω)g(Wτ(ω) − u
(1)
τ(ω)

− δ)]

≥ E[εe−θτ(ω)], for some ε > 0

≥ εe−θTP(τ ∈ [0, T ]) > 0,

where the first inequality holds by strict monotonicity of g.
Part (ii): We first prove convexity of J∗(s, w) defined in Theorem 1, and use it to

establish convexity of C(s).
In order to show convexity of J∗(s, w), we need to show that the operator T defined

in (9) preserves convexity. Then the claim would be immediate using the convergence of
value iteration algorithm (10) to optimal cost J∗, where the initial condition is an arbitrary
convex function such as J0 = 0.

Next we show that the operator T preserves convexity for this particular problem. Define
the objective function in (9) as Q(s, w, u). We have

Q(s, w, u) = g(w − u) + E
[
e−θt0J

(
min{s− u+ rt0, s̄},W

)]
= g(w − u) +

∫ ∞
s̄−s+u
r

e−θt0E[J
(
s̄,W

)
]Re−Qt0dt0

+

∫ s̄−s+u
r

0
e−θt0E[J

(
s− u+ rt0,W

)
]Re−Qt0dt0.
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Using the fact that J is convex, linearity of expectation and basic definition of a convex
function, it is straightforward but tedious to show that Q(s, w, u) is a convex function.
We omit the details for brevity. Given the convexity of Q, the convexity of (TJ)(s, w) is
immediate, since we are minimizing a multidimensional convex function over one of its
dimensions. Hence, we have established convexity of J∗(s, w) in (s, w). Finally, we can
express C(s) in terms of J∗(s, w) as in (8). This results in convexity of C(s) using the above
argument for proving convexity of Q(s, w, u).

Part (iii): The derivation of Hamilton-Jacobi-Bellman is relatively standard. We omit
the proof for brevity. For a more detailed treatment, please refer to [3], [10] and [8]. �

Proof of Theorem 3: We establish optimality of µ∗ by showing that it achieves an expected
cost no higher than any other admissible policy. Consider an admissible policy µ̃ such that
µ̃(s, w) < min{s, w} for some (s, w) ∈ [0, s̄]× [0, B]. For every sample path of the controlled
process, let τ1(ω) be the first Poisson arrival time such that

min{s
τ−1
,Wτ1} − µ̃(s

τ−1
,Wτ1 ) = ε > 0.

Therefore, by applying policy µ̃ instead of µ∗, we pay an extra penalty of βεe−θτ1(ω). The
reward for this extra penalty is that the state process is now biased by at most ε, which allows
us to avoid later penalties. However, since the stage cost is linear, the penalty reduction by
this bias for any time τ2(ω) > τ1(ω) is at most βεe−θτ2(ω). Hence, for this sample path ω,
the policy µ̃ does worse than the myopic policy µ∗ at least by βε(e−θτ1(ω) − e−θτ2(ω)) > 0.
Therefore, by taking the expectation for all sample paths, the myopic policy cannot do worse
than any other admissible policy. Note that this argument does not prove the uniqueness of
µ∗ as the optimal policy. In fact, we may construct optimal policies that are different from
µ∗ on a set A ⊆ [0, s̄]× [0, B], where P((st− ,Wt) ∈ A) = 0. �

We delay the proof of Theorem 4 until after proof of Theorem 5. Let us start with some
useful lemmas on the structure of the kernel function.

Lemma 1 Let φ(p) be defined as in (17). We have

1. If φ(p0) = −p0 for some p0, then φ(p) = −p, for all p ≤ p0.

2. If φ(p1) = 0 for some p1, then φ(p) = 0, for all p ≥ p1.

Proof By convexity of the stage cost function and Theorem 2(ii), φ(p) is the optimal solution
of a convex program. Therefore, if φ(p0) = −p0 for some p0 ≤ 0, we have

g′(−p0) + C′(0) ≥ 0.

Thus, by convexity of stage cost, g(−p) ≥ g(−p0), for any p ≤ p0. Therefore, by convexity
of C(·) and g(·),

g′(x) + C′(x+ p) ≥ g′(−p) + C′(0) ≥ 0, for all x ≥ −p,

which immediately implies optimality of (−p), for p ≤ p0.

Similarly, for the case where φ(p1) = 0, we have g′(0) + C′(p1) ≥ 0, which implies

g′(x) + C′(x+ p) ≥ g′(0) + C′(p) ≥ 0, for all p ≥ p1,

hence, the objective is nondecreasing for all feasible x and φ(p) = 0. �

Lemma 2 Let C(s) be defined as in (6), and assume that the stage cost g(·) is convex.
Then

dC

ds
(s) ≥ −

Q

r
EW [g(W )], 0 ≤ s ≤ s̄. (24)
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Proof By Theorem 2(ii), the optimal cost function C(s) is convex. Hence, dC
ds

(s) ≥ dC
ds

(0).
On the other hand, by Theorem 2(iii), we can write

dC

ds
(0) =

Q+ θ

r
C(0)−

Q

r
EW

[
min
u=0

g(W − 0) + C(0)
]
.

Combining the two preceding relations proves the claim. �

Lemma 3 If δ ≥ 0, then the first constraint in (17) is never active, i.e., φ(p) < min{B, s̄−
p}.

Proof We show that under the non-negative drift assumption, the slope of the objective
function is always non-negative at x = min{B, s̄− p}. In the case where s̄− p ≤ B, we have

∂

∂x

(
g(x) + C(x+ p)

)∣∣∣
x=s̄−p

= g′(s̄− p) + C′(s̄) ≥ 0,

where the inequality follows from monotonicity of g and (12). For the case where s̄− p ≥ B,
we employ Lemma 2 and non-negative drift assumption to write

∂

∂x

(
g(x) + C(x+ p)

)∣∣∣
x=B

= g′(B) + C′(B + p)

≥ g′(B)−
Q

r
EW [g(W )] ≥ g′(B)−

EW [g(W )]

E[W ]
≥ 0,

where the last inequality holds because g(w) ≤ wg′(B), for all w ≤ B, which is a convexity
result. �

Proof of Theorem 5: By Theorem 2(iii), we can characterize the optimal policy as

µ∗(s, w) = argmin g(w − u) + C(s− u) (25)

s.t. 0 ≤ u ≤ min{s, w}.

Note that the optimization problem in (25) is convex, because g(·) and hence, C(·) is
convex (cf. Theorem 2(ii)). Using the change of variables

x = w − u, p = s− w,

we can rewrite (25) as µ∗(s, w) = w − x∗(p, w), where

x∗(p, w) = argmin g(x) + C(p+ x) (26)

s.t. x ≥ max{0,−p}
x ≤ w.

The optimization problem in (26) depends on both parameters p and w. We may remove
the dependency on w as follows. Since w ≤ B, s̄−p, we may relax the last constraint, x ≤ w,
by replacing it with x ≤ min{B, s̄ − p} The optimal solution of the relaxed problem is the
same as φ(p) defined in (17). If φ(p) < w, then the relaxed constraint is not active, and
φ(p) is also the solution of (26). Otherwise, since we have a convex problem, the constraint
x ≤ w must be active, which uniquely identifies the optimal solution as w. Therefore, the
optimal solution of the problem in (26) is given by x∗(p, w) = min{φ(p), w}. Combining the
preceding relations, we obtain

µ∗(s, w) = w −min{φ(s− w), w} =
[
w − φ(s− w)

]+
.

The representation in (18) is a direct consequence of Lemmas 1 and 3. Between some break-
points b0 and b1, the optimal solution of (17) can only be an interior solution, which is given
by (19). The uniqueness of φ◦(p) follows from strict convexity of g. Finally, by continuous
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differentiability of the cost function, equation (19) should hold at the break-points as well.
Therefore,

g′(−b0) + C′((−b0) + b0) = 0, g′(0) + C′(0 + b1) = 0,

which is equivalent to the characterizations in (20) and (21). The first inequality in (20)
holds by Lemma 2 and convexity of g(·), and the second inequality holds by the assumption
that δ ≥ 0, and applying convexity of g(·) again. �

Lemma 4 Let φ(p) be defined as in (17), and assume that the storage process drift δ ≥ 0,
and the stage cost g(·) is strictly convex. Then for all p1 ≤ p2,

−(p2 − p1) ≤ φ(p2)− φ(p1) ≤ 0. (27)

Proof We first establish the monotonicity of φ(p). Let p1 < p2. Given the structure of the
kernel function in (18), there are multiple cases to consider, for most of which the claim is
immediate using (18). We only present the case where −B ≤ p1 ≤ b1 and b0 ≤ p2 ≤ b1. A
necessary optimality condition at p1 is given by

g′(φ(p1)) + C′(p1 + φ(p1)) ≥ 0. (28)

Similarly, for p2, we must have

g′(φ(p2)) + C′(p2 + φ(p2)) = 0, (29)

Now, assume φ(p2) > φ(p1). By convexity of C(·) (cf. Theorem 2(ii)) and strict convexity
of g(·), we obtain

g′(φ(p2)) + C′(p2 + φ(p2)) > g′(φ(p1)) + C′(p1 + φ(p1)) ≥ 0,

which is a contradiction to (29).
For the second part of the claim, again, we should consider several cases depending on

the interval to which p1 and p2 belong. Here, we present the case where b0 ≤ p1 ≤ b2 and
b0 ≤ p2 ≤ s̄. The remaining cases are straightforward using (18). In this case, we have

g′(φ(p1)) + C′(p1 + φ(p1)) = 0, (30)

g′(φ(p2)) + C′(p2 + φ(p2)) ≥ 0. (31)

Combine the optimality conditions in (30) and (31) to get

g′(φ(p2)) + C′(p2 + φ(p2)) ≥ g′(φ(p1)) + C′(p1 + φ(p1)) (32)

Assume φ(p2) < φ(p1); otherwise, the claim is trivial. By strict convexity of g(·), we
have g′(φ(p2)) < g′(φ(p1)). Therefore by (32), it is true that

C′(p2 + φ(p2)) > C′(p1 + φ(p1)). (33)

Now assume φ(p2) − φ(p1) < −(p2 − p1). By rearranging the terms of this inequality and
invoking the convexity of C(·), we get C′(p2 + φ(p2)) ≤ C′(p1 + φ(p1)), which is in contra-
diction to (33). Therefore, the claim holds. �

Proof of Theorem 4: First, note that by Lemma 4, we get

φ(s2 − w) ≤ φ(s1 − w), for all w, s1 ≤ s2

which implies (cf. Theorem 5)

µ∗(s2, w)=
[
w − φ(s2 − w)]+ ≥

[
w − φ(s1 − w)]+= µ∗(s1, w).

Moreover, for all s and w1 ≤ w2, we can use the second part of Lemma 4 to conclude

φ(s− w1)− φ(s− w2) ≥ −(w2 − w1).

By rearranging the terms, it follows that

µ∗(s, w2)=
[
w2 − φ(s− w2)]+≥

[
w1 − φ(s− w1)]+= µ∗(s, w1),

which completes the proof. �
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