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Robust and Optimal Consumption Policies for
Deadline-Constrained Deferrable Loads

Mardavij Roozbehani, Donatello Materassi, Mesrob Ohannessian, and Munther A. Dahleh

Abstract—The paper analyzes the optimal response of an
individual smart load with deferrable demand for electricity, to
exogenous and stochastic price processes. It is assumed that a
smart load can delay a time-flexible energy demand up to a
fixed deadline. Under mild assumptions on the regularity of the
stochastic price process, it is shown that the optimal strategy is
to consume only when the price is less than or equal to a certain
threshold that depends only on the time left to the deadline and
the price statistics. This analysis is performed under both perfect
and partial information about the statistics of the price process.
Robust policies with performance guarantees are derived for the
partial information case. Such performance bounds are also used
for deriving upper and lower bounds on the economic value of
load-shifting. Numerical simulation results based on price data
from wholesale electricity markets suggest that when information
must be empirically extracted from data, the robust policies
provide various theoretical and practical advantages over the
full information policies.

I. INTRODUCTION

It is envisioned that in future smart grids, consumers or
smart loads on their behalf will adjust their consumption in
real-time to help mitigate the effects of the intermittencies of
renewable resources. New mechanisms for demand response
through contracts with industrial and residential consumers,
and through dynamic pricing to induce shifting of flexible
loads are possible enablers of this technological change [1]. In-
deed, it has been argued that at any given time, a considerable
amount of the total generated power is supplied to flexible
loads that are shiftable in time by a few minutes to a few
hours at little or no cost to the final user [2], [3]. Examples
abound and can be found in the areas of material processing,
electric vehicle (EV) charging, heating, ventilation, air con-
ditioning, refrigeration, and agricultural irrigation. Dynamic
pricing mechanisms can incentivize smart loads with flexible
demand to backlog their consumption when prices are high,
thereby relieving the grid of congestion or other strenuous
situations related to shortage of supply. By the same token,
smart loads will tend to consume when prices are low and the
grid is underutilized [4], [5].

Motivated by these considerations, we present a mathemat-
ical model to investigate the optimal response of smart loads
to exogenous and stochastic electricity prices. Although the
characterization of the associated optimal policy is closely
related to some variations of the well-studied inventory control
problem (see, e.g., [6], [7], [8] and the references therein), the
existing literature related to energy consumption under price
uncertainty and deadline constraints is relatively narrow. Sev-
eral papers including [9], [10], [11], [12], [2], [13], and [14]
have introduced the general concepts and examined detailed
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models for optimization of energy consumption (including
load-shifting) under price and/or supply uncertainty.

Compared to many previous quantitative studies, our model
is more abstract, since it does not consider physical param-
eters such as temperature, internal dynamics of heterogenous
appliances, or the mechanisms by which consumers or smart
appliances may react to prices. Instead, we include more
general descriptive features for the characteristics of energy
consumption under real-time pricing: the dynamics of backlog
demand, the deadline constraints, the statistical knowledge
of the price process, and the disutility of delay. Our model
does not include bounds on the possible consumption during
a single time interval and assumes the demand profile of the
task is known. These hypotheses are not very restrictive and
are met in many application domains. Indeed, technological
improvements are leading to batteries that can be rapidly
charged [15], and in many application scenarios, such as EV
charging, the energy demand profile of a device can be as-
sumed known (to the device) a-priori. As we will show in this
article, our model is sufficiently tractable to allow for several
insightful results about the optimal response of individual
loads. Furthermore, such abstract and generic models are more
likely to lead to development of tractable models of aggregate
consumption in response to real-time prices. Such models are
needed for feedback design in power distribution grids with
demand response [16]. In order to be useful for feedback
design purposes, the models need to be simple and tractable,
and cannot capture all the details. Robust control theory then
allows for feedback design based on a simplified nominal
model with robustness against uncertainties and unmodeled
dynamics.

From a methodological perspective, studies on energy con-
sumption optimization based on stochastic dynamic program-
ming (DP) or Lyapunov optimization, such as the recent papers
by [2], [17], and [14], are closest to our work. In particular,
a result similar to ours on the affine structure of the value
function associated with the optimal load-shifting problem was
obtained in [2] in a setup which directly couples renewable
generation with flexible loads and uses stochastic dynamic pro-
gramming to match intermittent generation with consumption.
In [17] a problem setup analogous to ours is posed for optimal
scheduling of both interruptible and non-interruptible loads
and optimal threshold policies are derived. Similar threshold
policies are obtained in [14] for optimal load-shifting with
the objective of minimizing the time-averaged cost of buying
electricity from the grid in the presence of a free renewable
resource. However, none of these papers studies the case of
correlated prices or robustness analysis. Recently, approaches
based on a combination of Monte Carlo simulations and
mixed-integer linear programming (MILP) for stochastic opti-
mization, or robust optimization and MILP for hedging against
price uncertainty have been developed for relatively detailed
models of energy consumption [18]. The context and purpose
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of these detailed studies are clearly different from ours for the
reasons that we already discussed above.

The contributions of this paper can be summarized as
follows. We propose a mathematical model for load-shifting in
response to a stochastic price process. Under the assumptions
of Markov contractivity in the mean and stochastic monotonic-
ity, we show that the optimal policy is to consume when the
price falls below or is on par with a time-varying threshold
that depends only on the statistics of the price process and
the time left to the deadline. This analysis considers a price
process that exhibits correlation in the time domain. From a
practical perspective, it is a challenging task to determine an
accurate statistical model for the price process from historical
data. Indeed, while the first and second moments of the
price process can be estimated in a relatively easy way,
large quantities of data would be required to obtain a non-
parametric Bayesian model. At the same time, the choice of
an appropriate parametric model is not trivial. In order to avoid
these difficulties, we derive policies that are robust with respect
to partial information about the available price statistics. This
partial information is represented in the form of inclusion
within a family of distributions.

We begin with specializing our analysis to the case of a
price process that is independent and identically distributed
(i.i.d.) and then show how this result can be leveraged for
deriving threshold policies that are robust against adversarial
price processes. In other words, at each time step the price can
be sampled from an adversarially selected distribution from
within a family of possible distributions. As a special case,
this includes the scenario where only the first and the second
moments of the price process are known. For this case, we
present explicit formulas for the computation of the thresholds
associated with the robust policy as a function of the first two
moments. We also use the structure of the optimal policy and
the specific dependence of the optimal cost on the thresholds
to obtain upper and lower bounds on the economic value of
load-shifting, defined as the expected savings that result from
optimal load-shifting compared with consuming energy on
demand. Numerical experiments based on actual wholesale
market prices are used to compare the various consumption
strategies showing the beneficial effects of the robust policies.

In order to improve the clarity of the exposition and the flow
of the results, all of the proofs are gathered in the Appendix.

II. A DYNAMIC MODEL OF CONSUMPTION WITH
SHIFTABLE DEMAND

Each individual smart load has a predetermined demand for
energy to be satisfied within a known time horizon consisting
of n intervals, indexed by k = 0, ..., n − 1. We denote the
demand for the k-th interval by dk, k ∈ {0, · · · , n− 1}. It is
assumed that the vector d = [d0, · · · , dn−1] is known at the
beginning of the optimization horizon. Each period’s demand
dk is inelastic (independent of price) but shiftable and can be
satisfied during any period l ∈ {k, · · · , n− 1}.

The backlogged demand at the k-th interval is denoted by
xk ∈ (−∞, 0]. The state variable xk is updated according to

xk+1 = xk + uk − dk, (1)

where, uk ≥ 0 is the amount of energy that is withdrawn from
the grid during the k-th period. We enforce the deadline for

meeting the total demand by setting xn = 0 as the terminal
condition.

In general, there is a disutility associated with backlogging
the demand, which represents the inconvenience of deferring
consumption. We characterize this disutility via a sequence of
linear penalty functions defined by pk(xk) = −pkxk, with
pk ∈ [0,∞) for k ∈ {0, · · · , n− 1}.

The price is declared at the beginning of each interval and
remains constant during that interval. We denote the price for
the k-th interval by λk, and assume that the price process is
an exogenous Markov process satisfying the two properties of
Markov contractivity in the mean [19], [20], and stochastic
monotonicity [21], [22] as defined below.

Definition 1 (Markov contractivity). Consider a Markov pro-
cess {λk}. We say that {λk} is Markov-contracting in the
mean, if for some 0 ≤ α < 1 and for all λ(1) and λ(2) we
have∣∣∣E[λk+1|λk = λ(2)]−E[λk+1|λk = λ(1)]

∣∣∣ ≤ α|λ(2) − λ(1)|. (2)

Definition 2 (Stochastic Monotonicity). A Markov process
{λk} is said to be stochastically monotonic if for all λ̂ ∈ R
the following property holds

λ(1) ≤ λ(2) ⇒
P{λk+1 ≤ λ̂|λk = λ(1)} ≥ P{λk+1 ≤ λ̂|λk = λ(2)}. (3)

The interpretation of the Markov contractivity condition is
that prices tend to correct (in the average sense) towards an
equilibrium. The stochastic monotonicity condition describes
a form of “continuity”, or “stickiness”, in the price dynamics:
a low price at time k is more likely (than a high price) to
lead to a low price at time k + 1 and, similarly, a high price
at time k is more likely (than a low price) to lead to a high
price at time k + 1. Both these conditions are relatively mild
and represent simple forms of regularity in the price dynamics.
Moreover, it is immediate that an independently and identically
distributed (i.i.d.) stochastic process satisfies both Markov-
contractivity (with α = 0) and stochastic monotonicity (with
equality holding in Equation (3)). Thus, the assumptions of
Markov-contractivity and stochastic monotonicity encompass
the frequently utilized i.i.d. assumption as a special case, and
are, hence, less restrictive.

The Optimization-Based Model

The consumer’s energy management problem can now be
formulated as a finite-horizon dynamic programming problem
as follows

min E

[∑n−1

k=0
λkuk − pkxk

]
(4)

s.t. xk+1 = xk + uk − dk, xn = 0

xk ≤ 0,

uk ≥ 0.

where the price process {λk} is a Markovian process satisfying
(2) and (3).
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III. ROBUST AND OPTIMAL POLICIES FOR
LOAD-SHIFTING

A. Perfect Information about the Price Distribution
The first result that we present is the solution to the

optimization problem (4).

Theorem 3 (Characterization of the Optimal Policy). Con-
sider the optimal load-shifting problem (4). Let Pk(λk+1 | λk)
denote the conditional probability measure of λk+1 given the
price λk at the k-th interval. Define, for k = 0, ..., n − 1, a
sequence of functions ψk : R 7→ R as follows:

ψn(λ) = λ, ∀λ ∈ R. (5)

ψk(λ) = pk +

∫
min{θ, ψk+1(θ)}dPk(θ | λ), ∀λ ∈ R.

(6)

The following statements hold.
(i) The optimal policy is a threshold policy characterized by:

u∗k =

{
0 λk > tk+1

dk − xk λk ≤ tk+1

(7)

where tn = +∞, and each threshold ti, i ∈ {0, ..., n−1},
is a solution to the equation

ψi(λ) = λ. (8)

Furthermore, Equation (8) has a unique solution.
(ii) The value function is affine in the backlog state xk and

nonlinear in the price, of the form:

Wk(xk, λk) = ηk(λk)− (pk + min {λk, ψk+1(λk)})xk,
(9)

where the sequence of functions ηk(·) is defined recur-
sively as follows, ∀λ ∈ R,

ηn(λ) = 0, (10)

ηk(λ) = dk min {λ, ψk+1(λ)}+

∫
ηk+1(θ)dPk(θ | λ).

(11)

The interpretation of Theorem 3 is as follows. The opti-
mal policy for consumption is determined by a sequence of
thresholds (t1, ..., tn) that can be computed with the complete
knowledge of price statistics. If the price λk falls strictly above
the threshold tk+1, we have u∗k = 0, otherwise, u∗k = dk−xk,
meaning that the user consumes enough to meet both the
standing demand for the period and the backlogged demand if
any. The backward iteration step (5)–(6) has a straightforward
economic interpretation once we assume that this threshold
policy is optimal. Neglecting for simplicity the penalty term
pk, the function ψk+1(θ) represents the average price that
will be paid if the threshold policy is applied in the time
horizon [k + 1, n], given that the price in the k-th interval is
θ. Equation (6), thus characterizes a choice that must be made
between consumption at time k with price θ or load shifting
at an average price ψk+1(θ), properly weighted according
to the probability distribution Pk(θ | λ). The result of this
computation provides the average price that it is going to
be paid, i.e., ψk(λ), by applying the threshold policy in the
interval [k, n] given that the price at time k − 1 is λ.

The iterations (10)–(11) have a similar interpretation. The
function ηk(λ) represents the average cost of consumption that

occurs in the interval [k, n], given that the price at time k is
λ. It is obtained by summing the average cost of consumption
in the horizon [k+1, n] given that the price at time k is λ, i.e.
E[ηk+1(θ | λ)], and the average cost incurred by consuming
dk at time k, i.e., dk min{λ, ψk+1(λ)}.

While these iterations require the function ψ to be com-
puted for each time, it has to be stressed that they can be
implemented relatively efficiently since ψ is involved only in
an integral expression.

Next, we present a corollary that specializes Theorem 3
to the i.i.d. price scenario. This corollary will play a pivotal
role in determining consumption strategies that are going to
be adversarially robust. Before we proceed, we introduce the
following definition.

Definition 4. The modulated expectation (ME) function as-
sociated with a probability measure P is a concave function
ΓP : R→ R− defined according to

ΓP (x) =

∫
min{θ − x, 0}dP (θ) (12)

Corollary 5 (Optimal Policy for i.i.d. Prices). Consider the
optimal load-shifting problem (4) with an i.i.d. price process
{λk} defined by a probability measure P . Let ΓP (·) be the
associated ME as defined in (12). The following statements
hold.
(i) The optimal policy is a threshold policy characterized by

(7), with the corresponding thresholds computed recur-
sively via the following equations:

tn = +∞, tk = pk + tk+1 + ΓP (tk+1) (13)

(ii) The expected cost-to-go (expected value function) is affine
in the backlog state, satisfying:

Vk(xk) =

∫
Wk(xk, θ)dP (θ) = −tkxk + ek, (14)

where the constant terms ek satisfy the following recur-
sive equations:

en = 0, ek = ek+1 + dk(tk+1 + ΓP (tk+1)) (15)

(iii) Given x0 = 0, the optimal expected cost is a demand-
weighted sum of the differences between the stage thresh-
olds and the marginal disutilities, i.e.,

V0(0) =

n−1∑
k=0

dk(tk − pk) (16)

Observe that, since tn = +∞, the computation of tn−1 is
obtained by computing the following limit:

lim
tk+1→+∞

pk + tk+1 + ΓP (tk+1) .

It is straightforward to prove that this limit always exists and
is finite. Also note that from (13) we always have tn−1 =
E[λ] + pn−1.

Remark 6. It is straightforward to show that in the case of an
i.i.d. price process, for non-interruptible loads with duration
longer than one period, our results are readily applicable.
The only decision is when to start consumption, and that will
be determined based on a similar threshold policy. The only
change is that the load’s time to deadline must be adjusted,
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and thus, the thresholds are shifted by a number of periods
that is equal to the load’s duration. The same applies to the
robust policies that are presented in the sequel.

B. Partial Information about the Price Distribution

In this section we relax the perfect information assumption
and propose threshold policies that are robust against an
adversarial set of distributions. We also provide performance
guarantees for the robust policies. The analysis is general and
relies on lower and upper bounds of the ME function ΓP . As
a special case of this analysis we consider the case where only
the mean and the variance of the price distribution is known,
and present analytic expressions for the approximations.

Definition 7. Given a sequence {t} def
= (t1, · · · , tn) ∈ Rn, we

say that πt : R2 7→ R is a threshold policy associated with
{t} if the control policy u∗k = πt(xk, λk) is of the form (7)
with thresholds t1, · · · , tn. We denote by JP,πt

the expected
cost under policy πt and price distribution function P .

Theorem 8 (Robust Performance Guarantees). Let P be a
set of probability measures. Let functions Γ, and Γ mapping
[0,∞) to (−∞, 0] be such that for all x ∈ [0,∞), we have

Γ(x) ≤ ΓP (x) ≤ Γ(x), ∀P ∈ P. (17)

Define the midmost approximation function Γ̂ : [0,∞) 7→
(−∞, 0] as follows:

Γ̂(x) =
Γ(x) + Γ(x)

2
, ∀x ∈ [0,∞) . (18)

Let {t}, {t}, and {t̂}, be sequences recursively generated
according to (13) with Γ, Γ, and Γ̂ respectively, and let π,
π, and π̂, be the associated threshold policies. Define:

J =

n−1∑
k=0

dk(tk − pk), J =

n−1∑
k=0

dk(tk − pk),

Ĵ =

n−1∑
k=0

dk(t̂k − pk).

The following statements hold:
(i) The threshold policy π is robust in the sense that

J ≤ JP,π ≤ J, ∀P ∈ P. (19)

(ii) For any distribution P ∈ P , the optimal cost is bounded
between J and J . That is,

J ≤ J∗P
def
= inf

π
JP,π ≤ J, ∀P ∈ P. (20)

(iii) The expected cost under the midmost threshold policy π̂
is close to Ĵ in the following sense:∣∣∣JP,π̂ − Ĵ∣∣∣ ≤ n−1∑

k=1

f(k)
∣∣∣ΓP (t̂k)− Γ̂

(
t̂k
)∣∣∣ , ∀P ∈ P

(21)

≤ 1

2

n−1∑
k=1

f(k)
∣∣Γ (t̂k)− Γ

(
t̂k
)∣∣ , (22)

where

f(k) = min

{
max{dk}
F (t̂0)

,

k−1∑
i=0

di

}
.

Remark 9. Note that the results of Theorem 8 do not rely on
the assumption that the price distribution is i.i.d. In particular,
the policy π is robust adversarially, in the sense that at each
stage, the price can be sampled from a different distribution
that is chosen by an adversary. As long as Γ is an upper bound
on the ME function of these distributions the policy is robust
and the bounds are valid. In the case of correlated prices this
means that the ME of all the conditional distributions must be
upper bounded by Γ.

Theorem 10 (Bounding the ME function). Suppose that
the price process has support over a bounded interval
[λmin, λmax] ⊂ R. Let λmin = 0 and λmax = 1. Given a
mean µ ∈ [0, 1] and an achievable variance σ2, let P be the
set of all distributions with support on [0, 1] that have mean
µ and variance σ2, and let P ∈ P. Then, ΓP can be bounded
from above and below as follows:

Γ(x) ≤ ΓP (x) ≤ Γ(x), ∀x ∈ [0, 1], (23)

where,

Γ(x)=


0 , x ∈

[
0, µ− σ2

1−µ

]
(1− µ)(µ− x)− σ2 , x ∈

[
µ− σ2

1−µ , µ+ σ2

µ

]
µ− x , x ∈

[
µ+ σ2

µ , 1
]

(24)

Γ(x)=



−σ2

σ2+µ2x , x ∈
[
0, µ

2+σ2

2µ

]
−σ2
√

(µ−x)2+σ2

σ2+(µ−x+
√

(µ−x)2+σ2)2
, x ∈

[
µ2+σ2

2µ , 1−µ
2−σ2

2(1−µ)

]
−(1−µ)2(x−1)
(1−µ)2+σ2 + µ− 1 , x ∈

[
1−µ2−σ2

2(1−µ) , 1
]

(25)
Furthermore, both of these bounds are tight point-wise, in the
sense that for every x ∈ [0, 1] there exists a distribution P ∈ P
for which ΓP (x) = Γ(x) and another distribution P ∈ P for
which ΓP (x) = Γ(x). Finally, with a slight abuse of notation,
the bounds for arbitrary λmin and λmax can be expressed via
the following transformations:

Γ(x;λmin, λmax, µ, σ) = lΓ (xl; 0, 1, µl, σl) , (26)

Γ(x;λmin, λmax, µ, σ) = lΓ (xl; 0, 1, µl, σl) , (27)

where l = λmax − λmin, xl = (x− λmin)/l, µl =
(µ− λmin)/l, and σl = σ/l.

Consider the class of probability distributions with support
over [0, 1], with mean µ = 1/2 and variance σ2 = 1/12. Fig-
ure 1(a), shows the ME function (ΓP ) for the special case of
a uniform distribution, as well as the upper and lower bounds
defined in Theorem 10, and the midmost approximation of
equation (18) for all distributions within this class. Note that
the midmost approximation closely approximates the uniform
distribution.
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Fig. 1. (a) For distributions over [0, 1], with mean 1/2 and variance 1/12, we
plot the ME function of the uniform distribution, as well as partial information
upper and lower bounds, and the midmost approximation. (b) Illustration of
upper and lower bounds on the value of load-shifting as a function of the
standard deviation, under all possible distributions with support over [0, 100]
and mean µ = 50. The shifting horizon is n = 24, dk = 1, and pk = 0
for all k. Also shown are the value under 2-point symmetric distribution and
continuous uniform distribution with the same mean µ = 50.

In Section IV, we use the results of Theorems 8 and 10
to establish bounds of the cost of the optimal load-shifting
problem (4). We apply the threshold policy (7) under various
perfect and partial information structure assumptions studied
in this section to actual wholesale electricity market data and
discuss the simulation results.

IV. THE VALUE OF LOAD-SHIFTING

We define the value of load-shifting as the expected saving
that results from adopting the optimal policy (7) compared
with consuming electricity on demand. The formal definition
is as follows:

V = sup
πt

{
E

[∑n−1

k=0
dkλk

]
− Jπt

}
, (28)

where Jπt
is the expected cost of problem (4) under a threshold

policy πt. For the case of i.i.d. price distribution with full infor-
mation we can express (28) as V = E

[∑n−1
k=0 dkλk

]
− V0(0),

where Vk(·) is the expected value function defined in (14).
Thus, we are benchmarking the performance of the optimal
threshold policy (7) against the average cost in the absence

of load-shifting. Intuitively, we expect that the value of load-
shifting would increase with price volatility (measured by the
variance). The following corollary establishes that when the
average price is held constant, for all possible distributions the
value of load-shifting is lower-bounded by a quadratic function
of the standard deviation.

Corollary 11. Let V be the value, as defined in (28), of the
load-shifting problem (4). Let p = [p0, · · · , pn−1] be the vector
of disutilities and d = [d0, · · · , dn−1] be the vector of demand.
Then, for all distributions (not necessarily i.i.d.) with fixed
mean µ, support over a bounded subset [λmin, λmax] ⊂ R, and
variance σ2 ≤ σ2

max, where σ2
max is the maximum achievable

variance, the following statements hold:

(i) There exist functions C(p) and D(p, d) such that
n−1∑
k=0

dk(µ+ pk − tk) = C(p) +D(p, d)σ2 ≤ V ≤

≤
n−1∑
k=0

dk(µ+ pk − tk) (29)

where {tk} and {tk} are recursively generated as in
(13) with Γ, and Γ given by (24) and (25) respectively.
Furthermore, C(0) = 0.

(ii) Regardless of the the information structure about the
price process, both bounds in (29) are tight for n = 2.

Figure 1(b) shows the upper and lower bounds on V as the
standard deviation σ varies from 0 to the maximum achievable
σ = 50 for the case where λmin = 0, λmax = 100, and the
mean is µ = 50.

Numerical experiments
In order to evaluate the implications of our assumptions—

particularly about the stochastic price process—on perfor-
mance, we have simulated implementations of the threshold
policy under different assumptions, against actual wholesale
electricity market data. We have considered hourly aver-
aged real-time Locational Marginal Prices (LMP’s) in the
PJM (Pennsylvania-Jersey-Maryland) Interconnection for 676
weeks during the period 1/10/1999 to 12/31/2011 [23], and
have adjusted them for inflation according to the monthly
Consumer Price Index (CPI). Since energy consumption is
not homogeneous during the span of a day, we have taken
into account only data in a 16-hour lapse (08:00-24:00) that
manifest a better level of uniformity. Scatter plots of the price
at a certain hour versus the price at the next hour are shown
in Figure 2(a) for four different times of the day.

These scatter plots highlight both non-stationarity across the
hours of the day in the data and also an observable degree
of correlation in the time series. In addition to this short
term correlation, data exhibit also correlation at other time-
scales, for example across various weeks of the year because
of seasonal and long term phenomena.

Given an empirical probability distribution (obtained from a
properly normalized, uniformly spaced histogram of the price
data) corresponding to any given time window, it is immedi-
ate to determine the associated (empirical) ME function ΓP
using (12) (see Figure 2(b)). The same procedure has been fol-
lowed to compute 13 empirical estimates of the ME function
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associated with sub-periods of 52 weeks each. The 13 yearly
estimates have been used to determine a “robust” piecewise
linear upper bound for ΓP (·), as illustrated in Figure 2(b). The
conditional probability distributions are estimated in a similar
way. The price range has been divided into identically spaced
intervals and a two-dimensional histogram of the realized
pairs (λk−1, λk) has been created. The normalized histogram
has been taken as the estimate of the conditional probability
distributions.

In this experiment, we have considered smart loads that
have a single unit of energy demand at the beginning of the
optimization horizon and no demand during the other time
slots. For different time horizons (from 1 to 16 hours) we
have implemented and compared the following strategies
• Immediate consumption on demand (no load-shifting).
• Corollary 5 (i.i.d. model) with empirical ΓP estimated

from the whole data set.
• Corollary 5 (i.i.d. model) with an empirical ΓP estimated

from a rolling time window of 4 weeks leading to
consumption time.

• The (robust) threshold policy of Theorem 8 with empir-
ical piecewise linear bound Γ (see Figure 2(b)).

• The (robust) threshold policy of Theorem 8 with the
“tighter” bound Γ from Theorem 10 with empirical mean,
variance, minimum and maximum prices estimated from
a rolling time window of 4 weeks leading to consumption
time.

• The (midmost) threshold policy of Theorem 8 with Γ̂
given by the average of the two functions Γ and Γ as
provided by Theorem 10 with empirical mean, variance
minimum and maximum prices estimated from a rolling
time window of 4 weeks leading to consumption time.

• Theorem 3 (Markov model) with conditional distributions
estimated from the whole data set.

• A procedure based on Certainty Equivalent Model Pre-
dictive Control (CE-MPC) (see, e.g., [24]) where future
prices have been assumed equal to their conditional
expectation given the current price using the empirical
conditional distribution obtained from the whole data set.

In order to test these different strategies, we have run series
of Monte Carlo simulations for 16 different optimization
horizons sampling random initial times in the considered
period of 676 weeks. From the data we have obtained an
empirical probability distribution of price sequences that has
been assumed exact.

For each optimization horizon we have considered 10000
price sequences, so, considering all time horizons, each policy
has been tested over more than one hundred thousand times.
The initial time is sampled randomly in such a way that the
optimization horizon never crosses midnight. In other words,
only contiguous data in the interval 8−24 are used. The initial
times have been drawn with resampling from the empirical
distribution (thus the same sequence might have been used
multiple times). Resampling is a quite common approach when
dealing with empirical data, especially for the evaluation of the
variability of data [25]. In our case, we have just resampled
data in order to obtain smoother curves (indeed the same
analysis without resampling has led to identical conclusions).
In all tests the disutility of delay has been set to zero.

We have considered different metrics to evaluate the strate-
gies. In Figure 3(a), we report the mean cost of consumption

0 50 100 150 200
0

50

100

150

200

Price at 00:00-00:59

P
ri
ce

a
t
0
1:
00
-0
1:
5
9

0 50 100 150 200
0

50

100

150

200

Price at 06:00-06:59

P
ri
ce

at
07
:0
0
-0
7:
59

0 50 100 150 200
0

50

100

150

200

Price at 12:00-12:59

P
ri
ce

a
t
1
3:
0
0-
1
3
:5
9

0 50 100 150 200
0

50

100

150

200

Price at 06:00-06:59

P
ri
ce

at
07
:0
0-
07
:5
9

(a)

-50 0 50 100 150 200 250 300
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

G
am

m
a
F
u
n
ct
io
n

Price

(b)
Fig. 2. (a) Scatter plot of price versus price at the next hour at four
different times of the day. (b) ΓP obtained using the entire set of data (black,
thick, dashed), ΓP obtained using sub-periods of 52 weeks each (color, thin,
solid) and a piecewise upper bound on ΓP (black, thick, solid) which can
be regarded as an empirical upper bound on the Γ(·) functions. This is a
piecewise linear function with one breakpoint only. The breakpoint and the
slopes are chosen such that all the empirical Γ(·) functions fall below this
piecewise linear approximation. Note that it is straightforward to construct
tighter piecewise linear upper bounds with more breakpoints to improve
accuracy.

for each strategy as a function of the time horizon.
Consumption on demand gives a constant expected cost that

does not depend on the horizon. All load shifting strategies
perform remarkably better. When the entire data set is used
for estimating the probability distributions, the strategy based
on the Markovian assumption provides only a slightly lower
average cost than the strategy based on the i.i.d. assumption.
In contrast, due to non-stationarity, strategies that use only a
rolling time window of 4 weeks lead to significantly higher
savings. The policy that provides the lowest average cost is
the the robust one based on Theorem 10.

While the proposed strategies result in a lower average
cost than consuming on demand, for certain price sample
paths, load shifting may actually result in a higher cost.
Indeed, shifting introduces a risk component in the total cost
of consumption. In Figure 3(b), we report the probability of



7

No load-shift

IID assumption (whole set of data)

IID assumption (estimate based on previous 4 weeks)

Robust approximation for the pdf

Upperbound from Theorem 10

Midmost approach

First order Markov process assumption

Certainty Equivalent MPC

0 2 4 6 8 10 12 14 16
42

44

46

48

50

52

54

56

58

60

length of time horizon [hours]

m
e
a
n
 c

o
s
t 
o
f 
c
o
n
s
u
m

p
ti
o
n
 [
$
]

 

 

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

length of time horizon [hours]

P
ro

b
a
b
ili

ty
 o

f 
L
o
s
s

 

 

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

length of time horizon [hours]

A
v
e
ra

g
e
 L

o
s
s
 [
$
] 
(w

h
e
n
 i
t 
o
c
c
u
rs

)

 

 

(a) (b) (c)
Fig. 3. Performance and measure of risk associated with different implementations of the threshold policy under different assumptions about the price
process. The square-marked line represents consumption on demand and is reported for comparison. The diamond-marked and upper-triangle-marked lines
are associated with the implementation of the optimal policy under the assumption of i.i.d. price. For the diamond-marked lines the probability distribution of
the price is obtained using the whole set of data, while for the upper-triangle-marked ones the probability distribution is estimated using only the four weeks
preceding the consumption horizon. The right-triangle-marked curves are the results of the implementation of the Certainty Equivalent Model Predictive Control
approach. The asterisk-marked, circle-marked and plus-marked lines are associated with robust implementations of the policy, again under the assumption
of an i.i.d. process. They correspond to the computations of the thresholds adopting, respectively, the piecewise upper bound of the function Γ depicted in
Figure 2(b), the function Γ as given by Theorem 10 and the function Γ̂ obtained as the mean of the two functions Γ and Γ as given by Theorem 10. The
cross-marked lines are associated with the implementation of the optimal strategy estimating the conditional probability distribution of the price, given the
price at the previous interval. (a) Average cost (b) Probability of loss (incurring in a higher cost than consumption on demand) (c) Average loss when it
occurs.

suffering a loss when a load shifting strategy is adopted (the
benchmark is consuming on demand), and in Figure 3(c), we
report the average loss incurred in those cases. The graphs in
Figure 3(b) and in Figure 3(c) illustrate measures of the risks
associated with different load shifting strategies. We observe
that the strategies based on upper bounding the ME function
keep both the probability of loss and the average loss at low
levels. Interestingly, the CE-MPC policy shows similar risk
to the robust policy (whether it is measured as probability of
loss or average loss). The reasons behind this observations may
deserve further investigation in future work. Nevertheless, the
CE-MPC policy has a higher average cost and is outperformed
by the robust policy. Numerical approaches based on MPC for
integration of heterogeneous resources and automated demand
response are popular, and often applicable to relatively detailed
models of energy networks, see, e.g., [26] for simulation
models and a case study.

Note that it is not possible to test the Markov strategy
using most recent price data leading to consumption time
because significantly more data is needed for constructing
empirical conditional distributions. A different approach (e.g.,
parametric modeling) is needed for estimating the conditional
distributions.

Remark 12. In all these simulations the disutility of delay
was set to zero. We can explain how these results would
change with increased disutility. As the disutility increases, the
thresholds increase for all presented policies. This means that
in Figure 3(a), all curves would be shifted upwards towards
the green curve that represents the consumption on demand
or "no load shifting" policy. The curvature or convexity of
these curves would also decrease as disutility increases and
in the limit, the curves approach the straight line that corre-

sponds to consumption on demand. The qualitative effect of
increased disutility on Figure 3(b) and Figure 33(c) is similar.
Higher disutility means higher thresholds, less shifting, lower
probability of loss and lower average loss. All curves in
Figure 3(b) and Figure 33(c) approach the straight line green
curve representing the no load shifting policy as disutility
increases. As a result, the sensitivity of the savings, or the
losses to the adopted policy decreases, as all policies approach
the no shifting policy.

Remark 13. An attractive feature of our approach is the
simplicity of the proposed threshold policies, which do not
demand the online solution of an optimization problem. The
basic step required for the backward iterations amounts to
the computation of an integral under a pre-specified prob-
ability measure. While given the current device standards
these methodologies might not be deployment-ready, there are
several ways in which they could be implemented in practice. If
demand response technologies are going to be widely adopted
in the future, it would be natural to see the introduction of
more sophisticated devices with higher computational power.
Alternatively, specific hardware implementations could be used
to make these computations more efficient since numerical
integration would be the only basic operation that is re-
quired. Finally, a third possibility is based on centralized
computations: a central entity can compute the thresholds and
communicate them to smart devices.

V. CONCLUSIONS AND FUTURE WORK

We proposed a dynamic model of consumption in response
to time-varying electricity prices, and derived optimal policies
for load-shifting when the price process is an exogenous
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Markovian process satisfying assumptions of Markov con-
tractivity and stochastic monotonicity. As a special case, this
includes the case where the price is an i.i.d. process. We have
leveraged the solution of the i.i.d. case to derive robust thresh-
old policies with performance guarantees for the case where,
at each time step, the price is sampled from an adversarially
selected distribution among a family of distribution functions.
We have compared these different policies via numerical
experiments using actual wholesale market prices. In partic-
ular we have considered the performance of these policies
in terms of two metrics: expected reduced cost compared
with consumption on-demand, and expected loss compared
with consumption on-demand given that a loss has occurred.
The first metric represents how on average a consumer will
save by adopting the policy while the second one can be
understood as a surrogate metric for the risk associated with
these policies. We have shown that the robust policies offer a
good compromise between performance and volatility without
requiring detailed information about the price process. Future
works include extending these results to the case with finite
consumption constraints on individual loads, and/or aggregate
congestion constraints on the consumption of several loads.
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APPENDIX

Proof of Theorem 3:
We need to introduce three lemmas before presenting the proof
of Theorem 3. The first lemma provides a decomposition of a
probability measure P as the sum of n measures {P1, ..., Pn}
defined on n intervals. Interested readers can consult [27] for
introductory concepts in measure theory.

Lemma 14. Let P be a probability measure on R. For any
n ∈ N \ {0}, it is possible to find a covering of the real
line {I1 = (−∞, b1], I2 = [a2, b2], ..., Ik = [ak, bk], . . . In =
[an,+∞)} and n measures P1, ..., Pn with the following
properties
• ak+1 = bk for k = 1, ..., n− 1
• for every measurable set A ⊆ R we have

∫
A
dP =∑n

k=1

∫
A
dPk

•
∫
Ii
dPj = δij/n

where δij = 1 if i = j, and δij = 0 otherwise.

Proof: Fixed n, for any k = 1, ..., n− 1, define

bk := sup
q

{∫ q

−∞
dP ≤ k

n

}
(30)

ak+1 := bk. (31)

For any set A ⊆ R, define the measures {Q1, ..., Qn} in the
following manner ∫

A

dQk :=

∫
A∩Ik

dP (32)

Defining

dPk := dQk +

(
k

n
−
∫
dQk

)
δbk (33)

where δz is the measure associated with the Dirac delta
centered in z, the properties in the lemma statement are
immediately verified.
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The following lemma provides conditions on probability
measures preserving, in some sense, the monotonicity and the
Lipschitz property of a function.

Lemma 15. Consider two probability measures dP (1) and
dP (2) on the real line, such that, for every q,∫ q

−∞
dP (1) ≤

∫ q

−∞
dP (2). (34)

Consider a monotonic non decreasing function φ : R → R
with Lipschitz constant less or equal to 1. Then, we have that

0 ≤
∫
φ(θ)dP (2)(θ)−

∫
φ(θ)dP (1)(θ) ≤ (35)

≤
∫
θdP (2)(θ)−

∫
θdP (1)(θ) (36)

Proof: Fix a natural number n > 0 and decompose P (1)

and P (2) as indicated in Lemma 14

P (1) =

n∑
k=1

P
(1)
k P (2) =

n∑
k=1

P
(2)
k . (37)

Also, let the two coverings be {I(1)1 = (−∞, b(1)1 ], I
(1)
2 =

[a
(1)
2 , b

(1)
2 ], ..., I

(1)
k = [a

(1)
k , b

(1)
k ], I

(1)
n = [a

(1)
n ,+∞)} {I(2)1 =

(−∞, b(2)1 ], I
(2)
2 = [a

(2)
2 , b

(2)
2 ], ..., I

(2)
k = [a

(2)
2 , b

(2)
2 ], I

(2)
n =

[a
(2)
n ,+∞)}, respectively. Since φ(·) is monotonic and has

Lipschitz constant L ≤ 1, it satisfies

θ1 ≤ θ2 ⇒ 0 ≤ φ(θ2)− φ(θ1) ≤ θ2 − θ1. (38)

Observe that∫
φ(θ)dP (1)(θ) =

n∑
k=1

∫
I
(1)
k

φ(θ)dP (1)(θ) (39)

=
1

n

n−1∑
k=1

φ(b
(1)
k ) + ε(1)n =

1

n

n∑
k=2

φ(a
(1)
k ) + ε(1)n (40)

and analogously∫
φ(θ)dP (2)(θ) =

1

n

n∑
k=2

φ(a
(2)
k ) + ε(2)n . (41)

where, for the monotonicity of φ, ε(1)n and ε(2)n are two quanti-
ties converging to 0 for n that goes to +∞. By contradiction,
assume that there exists α > 0 such that∫

φ(θ)dP (2)(θ)−
∫
φ(θ)dP (1)(θ) < −α. (42)

Then, by observing that a(1)k ≥ a
(2)
k , we have that

ε(2)n − ε(1)n < −α (43)

contradicting the fact the two quantities converge to 0 for n→
+∞. Analogously, consider∫

φ(θ)dP (2) −
∫
φ(θ)dP (1) = (44)

=
1

n

n−1∑
k=1

(φ(b
(2)
k )− φ(b

(1)
k )) + ε(2)n − ε(1)n ≤ (45)

≤ ε(2)n − ε(1)n +
1

n

n−1∑
k=1

(b
(2)
k − b

(1)
k ) (46)

where the last inequality follows form the fact that the Lips-
chitz constant of φ is less of equal to 1. We obtain the assertion
of the lemma by letting n→ +∞.

Lemma 16. Consider a sequence of classes of probability
measures {Pk(θ|λ)}, for k = 1, ..., n, parameterized by a
scalar λ. Consider the iterations for k = 0, ..., n− 1.

ψk(λ) = pk +

∫
min{θ, ψk+1(θ)}dPk+1(θ|λ) (47)

where pk are fixed real positive numbers and the terminal con-
dition is ψn(λ) = λ. Assume that the map λ →

∫
θdPk(θ|λ)

is a contraction and that the measures dPk(θ|λ) are stochas-
tically monotonic in λ. Then we have that
• ψk(λ) is monotonic and Lipschitz with constant L < 1

for any k ∈ {0, ..., n− 1}.
Proof: Define φk+1(θ) := min{θ, ψk+1(θ)} and observe

that if ψk+1(θ) is monotonic non decreasing with Lipschitz
constant less than or equal to 1, also φk+1(θ) is monotonic
non decreasing with Lipschitz constant less than or equal to
1. From Lemma 15 we have, for λ1 < λ2,

0 ≤ ψk(λ2)− ψk(λ1) = E[φk+1(θ)|λ2]− E[φk+1(θ)|λ1] ≤
≤ E[θ|λ2]− E[θ|λ1] < α(λ2 − λ1)

where the last inequality is given by the contraction property.

We are now ready to present the proof of Theorem 3.
Proof of Theorem 3 : The Bellman equation corre-

sponding to the underlying dynamic programming problem
associated with (4) is

Wk(xk, λk) =

min
uk

{−pkxk + λkuk + E[Wk+1(xk+1, λk+1)|xk, λk]} .

Define the Bellman function as

Wk(xk, λk) = −pkxk −min{λk, ψk+1(λk)}xk + ηk(λk).
(48)

Check by inspection that it satisfies the Bellman equation

Wk(xk, λk)

= min
0≤uk≤dk−xk

{−pkxk + λkuk + E[Wk+1(xk+1, λk+1)|xk, λk]}

= min
0≤uk≤dk−xk

{−pkxk + λkuk+

−E [(min{λk+1, ψk+2(λk+1)}+ pk+1)xk+1 − ηk+2(λk+1)|xk, λk]}

= min
0≤uk≤dk−xk

{−pkxk + λkuk + E[ηk+2(λk+1)|λk]+

−E [(min{λk+1, ψk+2(λk+1)}+ pk+1) (xk + uk − dk)|xk, λk]}

= −pkxk + E[ηk+2(λk+1)|λk]+

+ min
0≤uk≤dk−xk

{λkuk − ψk+1(λk)(xk + uk − dk)}

= −pkxk + E[ηk+2(λk+1)|λk] + min {λk, ψk+1(λk)} (dk − xk)

= E[ηk+2(λk+1)|λk] + min {λk, ψk+1(λk)} dk

− (pk + min {λk, ψk+1(λk)})xk.

Observe that

min
0≤uk≤dk−xk

{λkuk − ψk+1(λk)(xk + uk − dk)} =

= min {λk, ψk+1(λk)} (dk − xk)
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is obtained for

uk =

{
0 λk > tn−k−1
dk − xk λk ≤ tn−k−1 (49)

where tk+1 is the solution of ψk+1(λk) = λk. The solution
is unique because of Lemma 16. Indeed since ψk+1(λk)
has Lipschitz constant smaller than 1 it admits a unique
intersection with a line with slope qual to 1.

Proof of Corollary 5: The proof follows from Theorem 3.
Consider the iterations (5). Since the price is an i.i.d. process
the function ψk(λ), for k = 0, ..., n− 1, is constant and equal
to the threshold tk. Furthermore we have

ψk = pk +

∫ +∞

−∞
min{θ, ψk+1}dP (θ) (50)

= pk + ψk+1 +

∫ +∞

−∞
(min{θ, ψk+1} − ψk+1)dP (θ)

(51)
= pk + ψk+1 + Γ(ψk+1). (52)

Analogously, in the i.i.d case, the difference equation defining
ηk becomes

ηk(λ) = ηk+1(λ) + min{λ, ψk+1}dk. (53)

As a consequence, we have

ek = E[ηk(θ)] = ek+1 + (tk+1 + ΓP (tk+1))dk. (54)

The computation of V0(0) is straightforward from the first two
results of the theorem.

Proof of Theorem 8: Before we proceed with the proof of
Theorem 8, we introduce a proposition and a lemma.

Proposition 17. Let the function Υ : R2 7→ R be defined as
follows

Υ (τ, γ) =

∫ τ

λmin

(θ − γ) dP (θ) (55)

For any given sequence t = (t1, · · · , tn) ∈ Rn, with
tn = λmax, the expected cost-to-go of problem (4) under the
threshold policy πt is affine, of the form

V tk (xk) = −gkxk + hk, ∀k ∈ {0, · · · , n− 1}, (56)

where gk and hk satisfy the following recursive equations:

gn = λmax, hn = 0, (57)

gk = pk + gk+1 + Υ (tk+1, gk+1) (58)

hk = hk+1 + dk (gk+1 + Υ (tk+1, gk+1)) (59)

Proof of Proposition 17 : The proof is by backward
induction. Since tn = λmax, we have un−1 = dn−1 − xn−1
and V tn−1(xn−1) = −pn−1xn−1 − λxn−1 + λdn−1, where λ
is the expected value of the price. It follows from (57) – (59)
that gn−1 = λ+pn−1 and hn−1 = λdn−1, and therefore, (56)
holds for k = n−1. Suppose that V tk+1 (·) is of the form (56)

for some k ≤ n− 2. Then, we have:

Jk (xk, λk)

def
= minE

[
−pkxk + λkuk +

n−1∑
i=k+1

−pixi + λiui

∣∣∣∣∣xk, λk
]

= min
uk

{
−pkxk + λkuk + V tk+1(xk+1)

}
= min

uk

{−pkxk + λkuk − gk+1 (xk + uk − dk) + hk+1}

= hk+1 − pkxk +

{
gk+1 (dk − xk) , λk > tk+1

λk (dk − xk) , λk ≤ tk+1.

Thus,

V tk (xk)
def
= E [Jk (xk, λk)]

= hk+1 − pkxk+

(dk − xk) [gk+1 (1− F (tk+1)) + E [λk|λk ≤ tk+1]F (tk+1)]

= hk+1 − pkxk + (dk − xk)

[
gk+1 +

∫ tk+1

λmin

(θ − gk+1) dP (θ)

]
= hk+1 + dk (gk+1 + Υ (tk+1, gk+1)) +

− xk (pk + gk+1 + Υ (tk+1, gk+1))

def
= hk − gkxk

Proof is complete by induction.

Lemma 18. The function G (x)
def
= x+ ΓP (x) where ΓP is a

modulated expectation function is non-decreasing.

Proof of Lemma 18 : Take x1 < x2 By definition, we
have

G(x1) =

∫
min{θ, x1}dP (θ)

≤
∫

min{θ, x2}dP (θ) = G(x2)

We are now ready to present the proof of Theorem 8.
Proof of Theorem 8 :

(i) We prove the upper bound. The lower bound follows
automatically from the lower bound in (20). By definition,
we have

JP,π = V t0 (0) = h0

where h0 is computed recursively via (57) – (59). It
follows from (59) that

h0 =

n−1∑
k=0

dk
(
gk+1 + Υ

(
tk+1, gk+1

))
=

n−1∑
k=0

dk (gk − pk)

Thus, to prove the upper bound it is sufficient to show
that gk ≤ tk for all k = 0, ...n This is in turn proven by
induction. Note that we have gn = tn = λmax. Suppose
that gk ≤ tk. for some 0 ≤ k < n. Then we have:

gk = gk+1 + Υ
(
tk+1, gk+1

)
(60a)

≤ tk+1 + Υ
(
tk+1, tk+1

)
(60b)

= tk+1 + Γ
(
tk+1

)
(60c)

≤ tk+1 + Γ
(
tk+1

)
(60d)

= tk (60e)
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where (60a) follows from (58), (60c) follows from the
definitions of Υ and Γ in (55) and (4), (60d) follows
from the right hand side inequality in (17), (60e) holds
by definition, and the proof of (60b) is as follows:(

gk+1 − tk+1

)
+ Υ

(
tk+1, gk+1

)
−Υ

(
tk+1, tk+1

)
=
(
gk+1 − tk+1

)
+

∫ tk+1

λmin

(
tk+1 − gk+1

)
dP (θ)

=
(
gk+1 − tk+1

) (
1− F

(
tk+1

))
≤ 0.

The proof is completed by induction.

(ii) The upper bound follows immediately from the upper
bound in (19). We prove the lower bound. It follows from
(16) that

J∗P =

n−1∑
k=0

dk(tk − pk)

where tk are the optimal thresholds computed via (13).
Therefore, it is sufficient to prove that tk ≥ tk, for all k.
This is in turn proven by induction. Note that tn = tn =
λmax. Suppose that tk ≥ tk for some k ≥ 0. Then,

tk−1 = tk + Γ (tk) ≥ tk + Γ (tk) ≥ tk + Γ (tk) = tk−1

where the leftmost inequality follows from tk ≥ tk and
monotonicity of the function G (x) = x+ Γ (x) (Lemma
18), and the rightmost inequality follows from the left
hand side inequality in (17). The proof is complete by
induction. Note that this also proves the lower bound in
(19).

(iii) It is sufficient to prove (21). The inequality (22) is
immediate from the definitions of Γ, Γ, and Γ̂. It can
be shown that∣∣∣JP,π̂ − Ĵ∣∣∣ =

∣∣∣∣∣
n−1∑
k=0

dk(ĝk − t̂k)

∣∣∣∣∣ ≤
n−1∑
k=0

dk
∣∣ĝk − t̂k∣∣

(61)
where ĝn−k−1 are computed recursively via (57) – (59).
For convenience in notation let ak = 1 − F (t̂k). It can
be verified that :

ĝk − t̂k =
(
ĝk+1 − t̂k+1

)
âk+1 + Γ(t̂k+1)− Γ̂(t̂k+1).

In addition, the sequence ak is monotonic: â0 ≤ â1 ≤
· · · ≤ ân. Therefore,∣∣ĝk − t̂k∣∣ ≤ ∣∣ĝk+1 − t̂k+1

∣∣ â0 +
∣∣∣Γ(t̂k+1)− Γ̂(t̂k+1)

∣∣∣ .
(62)

Summing both sides of the above inequality from k = 0
to k = n− 1, followed by adding a term

∣∣ĝ0 − t̂0∣∣ â0 to
the right hand side yields (note that ĝn = t̂n):

n−1∑
k=0

∣∣ĝk − t̂k∣∣ ≤ â0 n−1∑
k=0

∣∣ĝk − t̂k∣∣+n−1∑
k=0

∣∣∣Γ(t̂k+1)− Γ̂(t̂k+1)
∣∣∣

If â0 < 1, the above inequality yields∣∣∣JP,π̂ − Ĵ∣∣∣ ≤ max{dk}
F (t̂n)

n−1∑
k=0

∣∣∣Γ(t̂k+1)− Γ̂(t̂k+1)
∣∣∣ .

The distribution free upper bound with f(k) =
∑k−1
i=0 dk

can be obtained by recursively plugging in (62) with â0 =
0 in (61).

Proof of Theorem 10: We provide a quick sketch of the
proof. For simplicity, we assume pk = 0 for k = 0, ..., n− 1.
The proof can be modified in order to take into account the
case where the disutility for backlogging is not identically
zero. When the mean and the variance of a bounded ran-
dom variable are constrained, the cumulative distribution is
consequently constrained, and so is its integral, i.e. Γ. To
provide tight upper bounds and lower bounds we therefore
argue first that no distribution can fall beyond those bounds
while satisfying the mean and variance constraints. This is in
the same spirit as Markov’s inequality.

For brevity, we do not consider all six cases individually,
and instead give the first case of the upper bound in detail, to
illustrate the approach. As x grows away from zero, one could
place no probability whatsoever before x without violating
the mean and variance constraints, up to some point x1. It
follows that we have, Γ is 0 for all x ∈ [0, x1]. The transition
happens when no such distribution exists. Since the mean can
be met even with an impulse on µ, the variance constraint
will fail first. A distribution supported on and [x, 1], with
mean µ, has the largest variance when it is a two-impulse
distribution concentrated on x and 1. Say these masses are
p and 1 − p respectively. The mean constraint dictates that
p = 1−µ

1−x . Therefore the second moment is x2 1−µ
1−x + µ−x

1−x .
At the breakpoint, this maximal second moment will match
σ2 + µ2 exactly, i.e. we must have:

(1− µ)x21 + (σ2 + µ2 − 1)x1 + (µ− σ2 − µ2) = 0.

It follows that:
x1 =

µ(1− µ)− σ2

1− µ .

The other cases can be obtained using the same proce-
dure. First constraint violations are identified, then resulting
transition points are marked down. Across each transition the
optimal distribution changes, and consequently so do the upper
and lower bounds on Γ.

Proof of Corollary 11: For simplicity, we assume p = 0.
The proof can be easily modified to take into account nonzero
disutility of delay.
(i) Both bounds follow from Theorem 8, equation (19) for

partial information and equation (20) for full information.
It remains to show that the lower bound is quadratic in
σ. This in turn follows from the quadratic dependence
of Γ(·) on σ as defined in Theorem 10, which preserves
the quadratic dependence of all the thresholds tk on σ in
backward computation.

(ii) Note that tn−1 = tn−1 = tn−1 = µ regardless of the
information structure. Thus we always have the optimal
threshold in the stage k = n − 1. Moreover, as stated
in Theorem 10, the bounds Γ(·) and Γ(·) are pointwise
tight. In particular, they are tight at x = µ. Thus when
n = 2, there always exists a pair of distributions that
achieve the upper and lower bounds respectively.
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