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Abstract—The paper presents a consistent and unbiased esti-
mator for dynamic, one-step-ahead prediction of the aggregate
response of a large number of individual loads to a common
price signal, using only aggregate past response data. The
price per unit of consumption is an exogenous signal which is
updated at discrete time intervals. It is assumed that individual
loads arrive in the system at random times with random
demands and random consumption deadlines, and may defer
their consumption up to the deadline in order to minimize their
total cost. It is further assumed that the individual loads adopt
a threshold policy in the sense that they only consume when
the price is below a certain threshold. A dynamic aggregate
model is constructed from models of independent individual
loads. A consistent and unbiased estimator which only uses
aggregate data, i.e., the price and aggregate consumption time-
series is presented for estimating the aggregate consumption as
a function of price.

Index Terms—Load Scheduling, Estimation.

I. INTRODUCTION

Real-time demand response from intelligent loads in re-
sponse to the real-time wholesale electricity market condi-
tions has been identified as one of the distinctive features of
future power grids [1], and both the theory and the practical
implementation aspects of this paradigm change have been
the subjects of a growing number of studies, see, e.g. [2], [3],
[4], [5]. Such active participation of loads in real-time opera-
tion of power systems is primarily advocated as a mechanism
to help match supply and demand, absorb exogenous supply
shocks, and improve the overall efficiency of the system. It is
important to note that sending price signals to electric loads
is not the only way to close the loop between wholesale
electricity markets and retail consumers, and other viable
schemes such as long-term contracts along with automation
and control have been considered and studied [6], [7], [8].

Given that a significant amount of the price elasticity of
consumers will come from deferring flexible loads, several
papers have examined optimal scheduling policies under
various models for deadline-constrained deferrable loads
under real-time or day-ahead pricing [9], [10], and [11]. An
interesting question of practical significance that has received
less attention is how to predict the aggregate consumption
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in response to real-time electricity prices? What information
and at what level of detail is needed in order to reach an
acceptable level of prediction accuracy?

Due to load-shifting and deadline constraints, taking the
dynamics of consumption into consideration becomes im-
portant, and static price-demand estimation approaches will
have limited applicability when it comes to real-time system
operation in which more accurate demand predictions are
needed. For these reasons, developing mathematical models
of price-responsiveness of consumers with flexible loads,
smart appliances, or electric vehicles, as well as the emerg-
ing aggregate behaviors from distributed load-scheduling is
fundamental for reliable and efficient operation of future
power systems. In particular, predicting the response of
these systems to a given price signal from limited aggregate
information is a problem of paramount importance.

In this paper, we consider a model in which individual con-
sumers with random demands and random deadlines arrive
in the system at random times and implement a threshold
policy to minimize their individual costs. We present an
explicit formula for computing the aggregate demand as a
function of price history and the arrival rates. We then present
a consistent and unbiased estimator which only uses the
history of price versus total consumption for estimating the
arrival rates. These estimated arrival rates are then used to
estimate the aggregate demand as a function of price. This
is the main contribution of this paper and is important for
at least two reasons: First, in practice, the only available
data might be the price-consumption history, and the actual
arrival rates of consumers may be unknown or hard to
estimate. Second, given that prices induce correlation in the
consumption of different consumers, it is not a-priori clear
that consumer arrival rates can be estimated from price-
consumption history.

For brevity and due to space limitations, the proofs of the
mathematical statements are omitted but can be found in the
extended version [12].

II. MODEL

A. Individual Consumer Model

Throughout the paper, time is discrete and denoted by
k ∈ Z+. Let N > 1 be a positive integer. Let the type
of an individual consumer be specified by a parameter
n ∈ {1, . . . , N}, which represents a deadline constraint, that
is, the number of periods within which the demand must be
fulfilled. The model of an individual load/consumer is then



defined as follows:

x(1) = u(1)− d(1)
x(k + 1) = x(k) + u(k)− d(k), k = 1, . . . , n− 1,

where, x(k) is the backlog state, d(k) can be interpreted as
demand or exogenous disturbance during period k, and u(k)
is the consumption decision according to the consumer’s
policy.

A general class of policies is threshold policies charac-
terized by a set of thresholds that depend on the time-to-
go until the deadline. Such a class can be described by
a vector (τt)t∈{1,...,N} ∈ RN , which is an N -tuple of
parameters indexed by the time-to-go t until the deadline1.
The corresponding threshold policy is described by:

u(k) =

{
−x(k) + d(k), λ(k) ≤ τ̂,
0, λ(k) > τ̂.

(1)

where λ(k) is the price per unit of consumption paid by
each consumer during period k, and τ̂ is the corresponding
threshold at time k. We assume that the price process is a sta-
tionary stochastic process which is exogenously determined,
i.e., it is independent of the decisions the consumers. In what
follows, we assume that any individual consumer follows
the threshold policy (1). This is motivated by the fact that
cost-optimal policies2 under various stochastic models for the
price fall in this category (see, for example, [11],[13],[9]).

B. Aggregate Model and Price-Consumption Function

The main idea behind this section is to present the aggre-
gate consumption as a function of price by keeping track
of history of arrivals as well as the prices, and how the
consumers would have backlogged. In the aggregate model
the consumers enter the system according to a stochastic
arrival process, respond to the real-time price by consuming
or shifting their demands based on the threshold policy (1),
and exit the system at their respective deadlines. We denote
the aggregate price-consumption function by

u(k, λ),

which represents the aggregate consumption as a function
of price λ(k) at each time step k, acknowledging that it
depends implicitly on the histories of price, demand, and
agent arrivals.

Definition 1. An arrival model is a non-negative,
integer-valued, N -dimensional vector stochastic process
(A(k))k∈N+

, where for each component n ∈ {1, · · · , N} and
each time k, the sample path An(k) represents the number
of new consumers that arrive with deadline n at time k.

Consider two attributes of an individual consumer in this
model at any specific time k: (1) the time-to-go until her
individual deadline which we denote by t ∈ {1, · · · , N},

1Note that for a particular consumer with deadline n, only the first n
thresholds are relevant.

2All admissible policies that guarantee the entire demand would be
fulfilled by the deadline must satisfy τ1 ≥ λmax = maxk λ(k).

and (2) the time she has been in the system so far which
we denote by s = n− t ∈ {0, · · · , N − t}. For convenience
in notation, let Gs,t(k) denote the group of all consumers at
time k, that have time-to-go t, and have been in the system
for s periods. All such consumers use the same threshold
for responding to the price signal, though they may have
different backlogs and there is heterogeneity in the intensity
of their responses.

Let us,t(k, λ) be the consumption of all consumers in
Gs,t(k) in response to price λ. Then, we clearly have:

u(k, λ) =

N∑
t=1

N−t∑
s=0

us,t(k, λ)

Let xs,t(k) denote the total backlog of consumers in
Gs,t(k) and let ds,t(k) denote the total demand of consumers
in Gs,t(k), that is:

ds,t(k) =
∑

j∈Gs,t(k)

dj(k)

Due to the threshold policy of the loads, all consumers in
Gs,t(k) consume their backlog in addition to their current
demand if and only if λ(k) is less than or equal to τt,
and consume nothing otherwise. Thus, us,t(k, λ) can be
expressed as:

us,t(k, λ) =

{
−xs,t(k) + ds,t(k), λ ≤ τt,
0, λ > τt.

(2)

Therefore, we can characterize the aggregate consumption
as a function of price by computing the backlog for each
group in the system. Since the maximal deadline is N , the
backlog accumulation duration is completely determined by
the price history from time k − N + 1 to time k − 1. Let
�

λ(k) = (λ(k −N + 1), · · · , λ(k − 1)) be a shorthand nota-
tion for this price history, and let

�

Λ = (Λ−N+1, · · · , Λ−1)
represent a vector of price history without reference to a
specific time k. Define by Bs,t(

�

Λ) to be the exact duration
over which any consumer in groups Gs,t(·) has accumulated
backlog when the price history is

�

Λ. This duration cannot
exceed s, the time in the system, and stretches as far back as
the last time the price fell below these consumers’ common
threshold. Formally, we have:

Bs,t(
�

Λ) = min ({s} ∪ {b ∈ N : Λ−b−1 ≤ τt+b+1}) . (3)

With a slight abuse of notation, we denote the backlog
accumulation duration of Gs,t(k) by Bs,t(

�

λ(k)). It can now
be seen that the total backlog of all consumers in Gs,t(k) is
given by:

xs,t(k) = −
k−1∑

`=k−Bs,t(
�
λ(k))

ds,t(`). (4)

Therefore, by using (4) and (2), the aggregate price-
consumption function at time k can be expressed explicitly in



terms of the price, demand and arrival processes as follows:

u(k, λ) =

N∑
t=1

N−t∑
s=0

us,t(k, λ) =

∑
t:λ≤τt

N−t∑
s=0

 k∑
`=k−Bs,t(

�
λ(k))

∑
j∈Gs,t(k)

dj(`)

 . (5)

C. Averaged Model

As a proxy for u(k, λ), which, in the absence of the
exact knowledge of all arrivals and demands is impossible
to compute, we propose the averaged price-consumption
function:

u(
�

Λ, λ) := E[u(k, λ) |
�

λ(k) =
�

Λ],

where the averaging is over the unknown arrivals and de-
mands. This is motivated by the fact that a system operator
may have knowledge of the model, including the stochastic
description of the demand and arrivals, but not of their actual
instances.

Assumption 1 (Stationarity Condition). The arrival process
is independent for different deadlines, is independent from
the demand process, and is i.i.d. across time, with mean
An = E[An(k)] and variance σ2

An
= var[An(k)] < ∞

for all n and k. Each consumer has an independent instance
of the same i.i.d. demand process, with mean d = E[dj(k)]
and variance σ2

d = var[dj(k)] <∞ for all users j and time
k.

With these assumptions, once we have the average rates
d and An, we can readily compute the averages of the
quantities in Equations (4), (2), and (5) in the following way:

E[xs,t(k) |
�

λ(k) =
�

Λ] = −d As+tBs,t(
�

Λ), (6)

E[us,t(k, λ) |
�

λ(k) =
�

Λ]

=

{
dAs+t (Bs,t(

�

Λ) + 1), λ ≤ τt,
0, λ > τt.

(7)

Therefore,

u(
�

Λ, λ) =
∑
t:λ≤τt

N−t∑
s=0

dAs+t (Bs,t(
�

Λ) + 1). (8)

III. MAIN RESULTS

In this section we present our main results. We first
describe the relative accuracy of the averaged model (Equa-
tion (8)) versus the exact aggregate model (Equation (5)).
This result characterizes the regimes (in terms of model
parameters) for which using the averaged price-consumption
function as an analysis and forecasting tool is justified.

A. Accuracy of the Averaged Model

It is imperative to ask how does the computed expected
consumption perform as a predictor of the actual con-
sumption? In the following theorem we present conditions
under which (8) provides an accurate estimate of the actual
demand.

Theorem 1. Given a price history
�

λ(k) =
�

Λ, and a price
λ(k) = λ, define e(k, λ) as the relative error of predicting
the actual demand based on the averaged demand. More
precisely, let:

e(k, λ) =
u(k, λ)

u(
�

Λ, λ)
− 1. (9)

Suppose that Assumption 1 is satisfied. Then, for all
�

Λ and
λ the mean-square relative prediction error, averaged over
demands and arrivals, satisfies:

E[e2(k, λ)|
�

λ(k) =
�

Λ] ≤
1∑
nAn

σ2
d/d

2
+N

maxnAn∑
nAn

max
n

σ2
An
/A

2

n. (10)

Inequality (10) has an interesting and intuitive explanation.
Indeed, σ2

d/d
2

and maxn σ2
An
/A

2

n represent the mean-
square relative errors of using averages to approximate the
demands and arrivals, respectively. These terms contribute
additively to the relative error of predicting consumption,
uniformly across all prices. In addition, there are two critical
properties of the arrivals that affect the accuracy of pre-
diction. These are: the arrival sum-rate and the arrival rate
heterogeneity. We obtain this additional insight by examining
the factors in (10):

• The demand relative error is scaled inversely by the
arrival sum-rate

∑
nAn. Therefore when the latter is

large, demand randomness becomes less relevant. This
can be explained by the increased averaging within each
group Gs,t(·).

• The arrival relative error is scaled by a measure of
heterogeneity among arrival rates for various deadlines:
the factor

(
maxnAn

)
/
(∑

nAn
)
. To justify this in-

terpretation, note that it is indeed minimal (equal to
1/N ) when all arrival rates are equal, i.e., extreme
homogeneity. Conversely, it is maximal (equal to 1)
when a single arrival rate dominates all others, i.e.,
extreme heterogeneity.

Examining the case when the arrival means and variances
are of the same order (e.g. for the discretized Poisson arrivals
where σ2

An
/An = 1, c.f. Section IV) provides additional

insight. In this case, we have maxn σ2
An
/A

2

n = 1/minnAn.
The contribution to the relative error by the arrival random-
ness then becomes:

N
maxnAn/minnAn∑

nAn
.

We see that while the numerator is still a measure of
heterogeneity, the arrival-sum rate scales the error inversely.



We may thus conclude that the demand-averaged and arrival-
averaged perspective is particularly accurate when arrival
rates are large and homogeneous.

B. Estimating the Averaged Price-Consumption Function

1) Price-consumption data and consistent estimation:
The estimator (8) allows us to forecast consumption as a
function of price if the average demand and arrival rates at
various deadlines are known. We show that when these rates
are not a-priori known, by using the structure of the model
we can learn them from the price-consumption history.

Definition 2. The price-consumption data of size K consists
of the price history λ(k), k = 1, · · · ,K, and the consump-
tion history u(k, λ(k)), k = 1, · · · ,K. We denote this by
(λ, u)K .

Our goal is to design a consistent estimator of the averaged
price-consumption function (8) from this limited informa-
tion.

Definition 3. An estimator of u(·, ·) is a sequence of func-
tions ûK that map (λ, u)K to a real-valued function ûK(·, ·)
on RN . A consistent estimator is one that guarantees, as
K →∞, that:

E

[
sup
�
Λ,λ

∣∣u( �

Λ, λ)− ûK(
�

Λ, λ)
∣∣]→ 0.

The above definition is motivated by the fact that one
would like to obtain an estimator that uniformly converges to
u over all possible sets of prices. Note that u is parametrized
by the average demand-weighted arrival rate vector dA. Con-
sequently, our approach is based on estimating this combined
vector in order to design an estimator of u. We present the
following proposition as a direct result of Equation 8 and the
fact that Bs,t(

�

Λ) + 1 is bounded by N .

Proposition 1. Let dA and dA
′

be two average demand-
weighted arrival rates, and denote by u(

�

Λ, λ) and u′(
�

Λ, λ)
the corresponding averaged price-consumption functions.
Then:

sup
�
Λ,λ

∣∣u( �

Λ, λ)− u′(
�

Λ, λ)
∣∣ ≤ N N∑

n=1

n|dAn − dA
′
n|.

This motivates the following definitions:

Definition 4. An estimator of dA is a sequence of functions
d̂A(K), that map (λ, u)K to a vector in RN . A consistent
estimator is one that guarantees, for each component n as
K →∞, that:

E
[∣∣dAn − d̂An(K)

∣∣]→ 0.

Definition 5. A π-estimator of u corresponding to an es-
timator d̂A(K) is an estimator û(K) which is obtained
by evaluating the averaged price-consumption function with
d̂A(K) instead of dA in Equation (8).

It is then only a quick corollary of Proposition 1 to
show that if d̂A(K) is consistent, then the corresponding π-
estimator û(K) is consistent as well. We therefore move our
attention to estimating dA. It is tempting to use the linear
structure of Equation (8) and perform linear regression in
order to construct an estimator of dA. However, since it is
the actual consumption and not the averaged consumption
that is observed, Equation (5) does not lend itself easily to
a straightforward regression on dA. This intuition, however,
serves as the basis for our approach.

2) Matrix representation: For convenience, we first intro-
duce a matrix representation for the dynamics of the system.
The following definitions transform the price-consumption
data into a consumption vector and a backlog duration
matrix, and represent the (unobserved) arrivals as a stacked
vector. To bypass the transient dynamics we can consider
consumption only at times k ≥ N .

Definition 6. Given the price-consumption data (λ, u)K ,
define the consumption vector u(K) to be a K − N + 1-
dimensional vector indexed by k ∈ {N, · · · ,K}:

uk(K) = u(k, λ(k)). (11)

Define also the arrivals vector A(K) as an NK-
dimensional vector indexed by n ∈ {1, · · · , N} and i ∈
{1, · · · ,K}:

An+N(i−1)(K) = An(i).

Proposition 2. If Assumption 1 holds, then for every
k ∈ {N, · · · ,K} the consumption uk(K) is the sum of
(B(K)A(K))k demands, where B(K) is a backlog duration
matrix that depends only on the price history within the
price-consumption data (λ, u)K .

These demands correspond to the dj(`) that appear in
Equation (5). They are i.i.d. within and across sums for
various k, and each is distributed as in Assumption 1.
Without explicit indexing this can be expressed as:

uk(K) =

(B(K)A(K))k∑
1

d. (12)

This proposition makes it transparent that the consumption
has the structure of a compound model, comparable to the
compound Poisson process. The linear structure is in the
random number (that depends on backlog and arrivals) of
terms in a sum of i.i.d. random variables (the demands).

3) A consistent estimator of dA: Before we state The-
orem 2, we introduce an identifiability condition. Let (·)]
denote the pseudo-inverse of a matrix. Let R(K) indicate
K vertically stacked N ×N identity matrices:

R(K) = [IN | ... | IN ]ᵀ.

One could think of R(K) as a block-replicating operator
when acting on a matrix from the left, and a block-summing
operator when multiplying from the right. To state the
identifiability condition concisely, note that if we partition
the space of prices based on the partition of the real numbers
by the thresholds τ1, · · · , τN , then any variation within each



part does not alter the dynamics of the system. Therefore
such a partition defines a (finite) equivalence class of prices.

Assumption 2 (Identifiability Condition). There exists some
δ > 0 such that for K large enough, the price-consumption
data (λ, u)K contains at least a fraction δ of each possible
value of (

�

λ(k), λ(k)), up to equivalence.

Theorem 2. Consider the estimator d̃A(K) of the average
demand-scaled arrival rates dA given by

d̃A(K) = (B(K)R(K))
]
u(K). (13)

If Assumption 2 holds, then d̃A(K) is consistent. More
precisely, for large enough K, d̃An(K) are unbiased for
all n, and their variances decay like O( 1

K ).

IV. SIMULATIONS

In this section, we assume that each {An(k)}k∈N+
for

t = 1, · · · , N, is a discretized version of a Poisson process
with rate αn. The discretization is in the sense that all arrivals
within each unit interval are assumed to enter the system at
an endpoint of the interval, and the time axis is normalized
such that each unit interval corresponds to a unit of time in
our model. It then follows that An = αn.

Example 1 - Learning, and prediction: We first examine
the performance of the proposed estimator for the case
of constant demand d = 1, leaving investigating variable
demand to the next example. We simulate the case with 20
independent instances of d̃A learned from K = 100, 1000,
and 10000 samples. In Figure 1, we plot a sample u(k, λ),
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Fig. 1. A sample price-consumption function u(k, λ) at an arbitrary time
k, together with the demand-averaged and arrival-averaged approximation
u(~λ(k), λ), which the system operator can compute.

at some arbitrary k. Note the piecewise constant property,
with changes only at τN , τN−1, · · · , τ2, due to the threshold
policy implemented by the consumers. The sloped response,
with higher consumption at lower prices, captures the price-
elasticity of the aggregate demand. Figure 1 also shows the
demand-averaged and arrival-averaged price-consumption
function u(

�

λ(k), λ) at the same time k, illustrating the close
approximation.

Example 2 - Accuracy of the average approximation:
To quantify the goodness of the approximation, we consider
the relative error (Equation (9)) between the true price-
consumption function and the demand-averaged and arrival-
averaged approximations. To average out this error over
arrivals, demands, and price histories, we simulate K =
10, 000 steps, and evaluate the sample root-mean-square√

1
K

∑
(k)e2(k, λ).

Figure 2 shows the dependence of the approximation error
on the arrival rates, using three cases:
• The case of the previous example, i.e. αn = 100(2n+

1), for t = 1, 2, 3, 4, 5. The error is at most of the order
of ±1.7%.

• The case when the arrival rates are doubled, i.e. αn =
200(2n + 1), for t = 1, 2, 3, 4, 5. The error is approxi-
mately 1/

√
2 times the previous example’s error, which

agrees with what (10) predicts.
• The case when the arrival rates are halved i.e. αn =

50(2n + 1), for t = 1, 2, 3, 4, 5. The error is ap-
proximately

√
2 times the previous example’s error, as

predicted.
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Fig. 2. The sample root-mean-square relative approximation error, com-
puted using 10, 000 samples, for each of three arrival configurations.
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Fig. 3. The largest sample root-mean-square relative approximation error
over 10,000 samples, as a function of demand variance.

So far we have assumed constant demand d = 1. We
expect the error to be worse with demand randomness. To
explore this, it is easiest to simulate all consumers using the



same demand process, and therefore highly correlated. This
is a departure from the simplified model presented in Section
II-C. However, when various consumers have independent
demands, the relative error of the approximation is neces-
sarily smaller, by virtue of Theorem 1 and the discussion
in Section III-A. The proposed analysis can therefore be
conservative.

Example 3 - The effect of heterogeneity of demand: We
fix the arrival rates to that of the previous examples, and
consider a sequence of uniformly distributed demands, all
centered at 1, but with variances ranging from 0 to 0.01.
As described, these demands are independent between time
steps but identical among all consumers. In Figure 3, we
plot the largest (over price) root-mean-square relative error
that results under each such demand distribution. Despite this
more conservative analysis, these observations are consistent
with the prediction of (10). These experiments suggest that
time-heterogeneity of demands does impact the goodness
of the price-consumption function approximation, but only
moderately so, and the latter remains a viable tool for pre-
dicting aggregate consumption in response to time-varying
prices.

V. CONCLUSIONS AND FUTURE WORK

From the model of an individual consumer we developed
a dynamic macro model which maps the price history and
the arrivals of individual consumers to an aggregate con-
sumption as a function of price. When the actual instances
of consumer arrivals and their demands are not known, the
expected aggregate consumption in response to a given price,
conditioned on the price history, can be computed as a
function of the rates of arrivals and the average demands. We
showed that this expected aggregate consumption can be used
as an effective predictor for actual aggregate consumption,
by characterizing its mean relative error. Moreover, when the
rates themselves are not known, we developed a consistent
and unbiased estimator to estimate them, using only the
history of consumption versus price.

Our results also highlight the effect of heterogeneity of
consumers in prediction error. As one may expect, the
relative error of the prediction decreases as the mean rates
increase or their variances decrease. However, when the
consumers are more heterogeneous, they pose an additional
source of uncertainty. In particular, if consumer arrival rates
are highly variable among various deadlines, then the error

between predicted consumption and actual consumption can
be higher. These results suggest that in practice, predicting
the actual response of a large population of consumers to
price signals with high accuracy can be a challenging task
for system operators.
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