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Stability of Linear Systems With Interval Time
Delays Excluding Zero

Carl R. Knospe, Member, IEEE, and Mardavij Roozbehani, Student Member, IEEE

Abstract—The stability of linear systems with multiple, time-in-
variant, independent and uncertain delays is investigated. Each
delay is assumed to reside within a known interval excluding
zero. A delay-free sufficient comparison system is formed by
replacing the delay elements with parameter-dependent filters,
satisfying certain properties. It is shown that robust stability of
this finite dimensional parameter-dependent comparison system,
guarantees stability of the original time-delay system. This result
is novel in the sense that it does not require any a priori knowledge
regarding stability of the time-delay system for some fixed delay.
When the parameter-dependent filters are formed in a particular
manner using Padé approximations, an upper bound on the de-
gree-of-conservatism of the comparison system may be obtained,
which is independent of the time-delay system considered. With
this, it is shown that the conservatism of this comparison system
may be made arbitrarily small. A linear matrix ineqaulity (LMI)
formulation is presented for analysis of the stability of the param-
eter-dependent comparison system. In the single-delay case, an
eigenvalue criterion is also available for stability analysis which
incurs no additional conservatism.

Index Terms—Linear matrix inequality (LMI), robust stability,
time delay.

I. INTRODUCTION

A. System With Interval Delay

In this paper, we are concerned with the development of cri-
teria for determination of the stability of the linear time-delay
system (LTDS)

(1)

Many investigators have examined the stability of LTDS with
much of the effort directed at obtaining delay-independent and
delay-dependent stability conditions (see [6] and [21]). The first
of these are developed to assess stability when the unknown de-
lays satisfy , while the latter are to be employed for de-
termining intervals of stability when the system is not delay-in-
dependent stable [21]. Often in the literature, the term delay-de-
pendent is used interchangeably for an analysis of the first delay
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interval, [6]. Most articles that provide delay-de-
pendent stability conditions use this term in this latter, more
narrow sense. Herein, we will continue to employ the term in
this manner. In both the delay-dependent and delay-independent
analysis problems, the delay may be zero and thus the stability
of the delay-free system is a necessary condi-
tion, which may be used in development of the analysis criteria.
However, for many systems of practical importance, the delay
is known to be in an interval with . Examples
include thermoacoustic instability in combustion systems [1],
[24] and chatter instability in machining [30]. Also, see [3], [20],
[21] for a variety of systems influenced by the stabilizing effect
of delay. In this paper we consider the stability analysis of (1)
with where , . We
will refer to this problem as the interval-delay problem. The dis-
tinction between the interval-delay and delay-dependent cases
is critical as can be easily seen by considering the single-delay
case . It is well known that a LTDS may be stable for

but not for some . In fact, there may be multiple
“pockets” of stability in space (see [18], [21], and [22]).

Little has appeared on this analysis problem in the literature.
A result for the single-delay case is provided by [16], which es-
tablishes a necessary and sufficient stability criterion for

, only if it is known a priori that the system is stable for
some fixed delay . This method is based on the
Nyquist criterion and requires a sweep over frequency to guar-
antee stability. A similar result for the multiple interval-delay
problem was provided by Huang and Zhou [15]. This result,
based on the -framework, required a priori knowledge of the
stability of the system for . Furthermore, the result may be
very conservative since the residual uncertain delays
are covered rather crudely [33], [34].

To employ the result of either [16] or [15], the stability of
the time-delay system must be established for a fixed delay
within the interval by a separate analysis condition. This essen-
tially provides a nominal stability foundation upon which the
robust stability results of [15], [16] may be constructed. Sev-
eral observations should be made regarding this nominal sta-
bility predicate and its use in conjunction with an interval con-
dition. First, any method that may be employed for checking it
could also be used for examining stability over an interval via
a sweep of the delay value in the nominal condition. Second, it
may be quite awkward to extend such a two-part analysis frame-
work to controller synthesis, as it may be difficult to elegantly
combine in a common framework the means for checking sta-
bility of the nominal infinite dimensional system and the means
for checking preservation of stability over the interval. Finally,
a computationally efficient, necessary and sufficient condition
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is not available for verifying the stability of the nominal infi-
nite dimensional system. The result of [22] could be considered
for this analysis problem. Here, a necessary and sufficient anal-
ysis technique was provided for the single delay case. This re-
sult, based on the counting of imaginary axis crossings with in-
creasing delay, may be used to establish intervals of stability for
small problems with a single delay. (An interesting earlier result
along these lines was presented in [29].) However, the nature of
the technique (i.e. counting crossings, symbolic analysis) pre-
vents it from being effectively employed for synthesis (or
performance analysis).

The matrix pencil approach examined in [5] and [21] (Sec-
tion IV-D) may be used to determine stability of systems with
commensurate delays where the delay interval excludes zero.
However, this is achieved in much the same fashion as in [22],
in the sense that stability for such an interval is determined by
starting with analysis of the delay-free system and then moni-
toring imaginary axis crossings of the poles, both into and out
of the right half plane, as the delay value is increased. As recog-
nized in [21], this approach cannot be extended to the non-com-
mensurate delay case. Like [22], the approach is not amenable
to further development for tackling other problems of interest
such as synthesis or analysis.

An alternative means for establishing the stability of the nom-
inal infinite dimensional system is the discretized Lyapunov
functional approach of Gu [10], [12]. While this method has per-
formed well in determining stability intervals for example prob-
lems via its repeated application in a bisection, no bound exists
on its conservatism. In this paper, we present an alternative ap-
proach to this stability analysis problem that eschews both the
two-part analysis formulation of [15], [16] and sweep approach
to interval stability of [10].

Finally, we draw the reader’s attention to numerical ap-
proaches to evaluating the stability of delay-differential
equations. Breda et al. [4] presented an approach in which
the infinitesimal generator of the associated semigroup is
discretized to construct a large sparse matrix, the eigenvalues
of which are shown to converge to the roots of the system’s
characteristic quasi-polynomial as the discretization mesh
is refined. In [7], a numerical algorithm involving subspace
iteration on the solution of the delay-differential equation was
obtained by time integration so as to form a large sparse matrix;
the eigenvalues of this are then used to calculate the rightmost
roots of the characteristic equation. Using an LMS method, the
stability of steady state solutions are numerically evaluated in
the DDE-BIFTOOL software package [8]. These approaches
share two attributes that recommend their application to prob-
lems with known delay: 1) they permit the examination of the
stability of LTDS with multiple (noncommensurate) delays;
and 2) they provide information not only upon stability, but also
on root location. For the uncertain delay problem, however,
these approaches are less advantageous than for the known
delay case. While they may, in principle, be employed with
a sweep of the delay value(s) so as to determine intervals of
stability, sweeping through the parameter space for a multiple
delay case would be both computationally costly and somewhat
unconvincing. We note that numerical approaches of this type
cannot be extended to controller synthesis.

The contributions of this paper are threefold. First, it presents
ageneral approachfordeveloping finite-dimensional,parameter-
dependent comparison systems for interval time-delay systems.
An affirmative result in the stability analysis of the former guar-
antees stability of the latter. Thus, a stability criterion may be
formulated without assuming any a priori knowledge regarding
the stability of the LTDS for some fixed delay within the in-
terval. From a viewpoint of robust control, this result is novel in
the sense that robust stability of the feedback interconnection is
established without requiring either open or closed loop nominal
stability in contrast with small gain and results. The second
contribution is the systematic construction of particular forms of
comparison systems using Padé approximations of . While
the ad-hoc engineering practice of replacing a known delay with
its Padé approximation can yield completely erroneous results
[28], [31], this paper offers an entirely rigorous criterion for
the unknown delay problem. Finally, the third contribution con-
cerns the conservatism introduced when the parameter-depen-
dent comparison system is employed for analysis of the LTDS.
When obtaining stability analysis criteria for LTDS, significant
conservatism is often introduced in “removing” the infinite-di-
mensional nature of the delay. This conservatism appears due to
both additional dynamics [9], [11], [17] and value-set covering
[34]. Here, it is shown that if the parameter-dependent filters
are developed in the prescribed fashion from the Padé approx-
imation of , the resulting parameter-dependent comparison
system has a bounded degree-of-conservatism which is known
a priori and is independent of the system data.

B. Notation

Let be the set of all real (complex)
matrices, and be the open (closed) right-half complex
plane. For matrices and ,

denotes the Kronecker product and denotes the
Kronecker sum. is the maximum positive real eigen-
value of and when has no positive real
eigenvalues. In the multiple-delay case, we use to denote the
delay vector and to denote the delay vector set

. Whenever ,
we will drop the index number “1.” For instance, rather than
write , we will write . In this case, we will
denote by to maintain consistency with the literature.

C. Preliminaries

The characteristic quasi-polynomial for is given by

(2)

In the single-delay case , we will rewrite (2) as

To minimize the computation required, we will decompose
where and have

full rank. Define , and
. Then, we have
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If , we denote , with and
.

Definition: The spectral limit of the function is

II. SUFFICIENT STABILITY CRITERION

A. Filter Properties

Consider a parameter-dependent, rational transfer function
, with belonging to , a bounded set of real numbers,

and having the following properties.
) The denominator of is Hurwitz for all

.
) The value set of , , covers that of

, i.e.,

where

) There exists a such that
.

Remark 1: Property -2 is the conventional value set cov-
ering employed in much of the LTDS literature, although it is
often hidden within the Lyapunov framework [34]. While cov-
ering the value set of the delay element has been traditionally
employed to develop sufficient delay-dependent stability criteria
for LTDS (see, e.g., [33]), it appears not to be sufficient for de-
veloping stability criteria for the interval-delay problem as the
nominal stability necessary to obtain robust stability is not avail-
able a priori. As we will see in the sequel, Property ,
together with Property may be joined into a more subtle
property that we introduce as strong covering.

Definition 2: The parameter-dependent filter is said
to strongly cover , , if s.t.

Lemma 1 (Strong Covering): Suppose satisfies Prop-
erties and . Then it strongly covers . That
is, for any pair and , there exists a

such that .
Proof: From Property , there exists a such

that for and we have .
Therefore

From Property , there exists a such that
which yields the desired result.

Remark 2: The strong covering property provides a homo-
topy from the parameter-dependent filter to the delay element
along which the value set of each homotopy function remains
within that of the parameter-dependent filter. This homotopy al-
lows us to carry the stability property from a finite-dimensional
comparison system to the LTDS.

B. Sufficient (Outer) Comparison System

Here, we introduce the parameter-dependent linear system

(3)

where is a minimal realization of

. Since is Hurwitz, this system is stable if
and only if all the roots of the meromorphic function

are in . Thus, the following two statements are equivalent.
i) for all .

ii) is stable for all .
We will show in the sequel that robust stability of will guar-
antee the robust stability of .

C. Main Result: Sufficient Condition

Define the quasi-polynomial

(4)

and the spectral limit function

(5)

To simplify notation, the dependence of these functions on is
suppressed.

Lemma 2: If for some and ,
then there exists a and a such that

and .
Proof: See Appendix I.

Theorem 1: Main Result, Single-Delay: If the uncertain
system is asymptotically stable for all , then will
be asymptotically stable for all .

Proof: The proof proceeds by contradiction. Toward this
end, we assume that is asymptotically stable for all
and that is unstable for some , that is .
We will consider first the case where . Since is
asymptotically stable for all , we have for all
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, and particularly for . Then, from Lemma 2, there exists
a and an such that

From Lemma 1, there exists a , such that
and, therefore

However, this implies that which is a contradiction.
Now, we consider the case where . In this instance,
there exists an such that

From Property , there exists a , , such that
and, therefore

However, this implies which contradicts our assump-
tion regarding the asymptotic stability of .

To present the corresponding multiple-delay results, we now
introduce the system as

(6)

where is the vector of parameters and
, where each is a

bounded set of real numbers. (Note that in this case is a vector

of real parameters). Here, is a minimal

realization of

(7)

where each satisfies properties through
.

Theorem 2: Main Result, Multiple-Delay: If the uncertain
system is asymptotically stable for all , then will
be asymptotically stable for all .

Proof: Similar to Theorem 1; see [25].

III. NECESSARY STABILITY CRITERION

A. Filter Properties

Consider a parameter-dependent, rational transfer function
having the following properties.

) The denominator of is Hurwitz for .
) The value set of , , covers that of
, , i.e.,

where

We will show that such an inner filter results in a necessary
condition for stability of .

Lemma 3: Suppose satisfies Properties
and . For any triplet
and , there exists a such that

.
Proof: From Property , for any , ,

and , there exists a such that .
Multiplying by , we have

which is the desired result.

B. Necessary (Inner) Comparison System

Herein, we introduce the parameter-dependent system

(8)

where is a minimal realization of

. Since is Hurwitz, is stable if and
only if all the roots of the meromorphic function

are in . Therefore, for all ,
if and only if is stable for all . We will demonstrate
that stability of is a necessary condition for stability of .

C. Necessary Condition

Define the quasi-polynomial

(9)
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and the spectral limit function

(10)

(The dependence of these functions on and is suppressed to
simplify notation.)

Lemma 4: If for all and for
some , then there exists a and a such
that and .

Proof: Follows in the same fashion as Lemma 2.
Theorem 3: Necessary Condition, Single-Delay: If the un-

certain linear time-delay system is asymptotically stable for
all , then is asymptotically stable for all .

Proof: The proof proceeds by contradiction. Toward this
end, we assume that is asymptotically stable for all ,

, and that is unstable for some , that is .
First, we consider the case where and then will return
to the case . Since is asymptotically stable for all

, we have for all . We may pick
any and define using these choices for
and . From Lemma 4, there exists a and a
such that

From Lemma 3, there exists a , such that
and, therefore

However, this implies that which is a contradiction.
Now, we consider the case where . In this instance,
there exists an such that

Now, from Property of , there exists a ,
such that and, therefore

However, this implies which contradicts our assump-
tion regarding the asymptotic stability of .

To present the corresponding multiple-delay results, we now
introduce the system as

(11)

where is a minimal realization of

where each satisfies properties and .
Theorem 4: Necessary Condition, Multiple-Delay: If the

uncertain linear time-delay system is asymptotically stable
for all , then is asymptotically stable for all .

Proof: Similar to Theorem 3; see [25].

IV. CANDIDATE FILTERS AND THEIR CONSERVATISM

A. Preliminaries

We now turn our attention to the development of filters
and such that through and

, hold. We seek to develop these functions such
that the degree-of-conservatism of the analysis criterion can
both be bounded and made arbitrarily small.

Definition 3: Given a continuous function
where , letting be the path created
by mapping the interval via to , we define
a continuous argument (phase) function for the value as

where
is the unique argument of , , and is the
winding number1 of path about .

Lemma 5: [32] Properties of the Padé Argument: Let
be the order diagonal Padé approximation to , with .
Define . Then, by definition is a
continuous function of with . Moreover

(12)

(13)

where

(14)

and

(15)

The following properties follow from Lemma 5 and are par-
ticularly useful in generating the parameter-dependent filters:

(16)

(17)

(18)

1For clockwise paths winding numbers are negative. See [23] for more details
regarding winding numbers.
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Lemma 6: [32] , .
Equation (17) provides an upper bound on

, which is very loose at high fre-
quencies. The following Lemma, provides a much tighter
bound on for high frequencies. We will
exploit the bound given in (19).

Lemma 7: For each Padé order , there exists a constant
, such that

(19)

Moreover, is an upper bound for .
Proof: See Appendix B.

Lemma 8: [19] Let be the order diagonal Padé ap-
proximation to , . For every , we have

Equality holds for only.

B. Outer Parameter-Dependent Filter

1) Definition: Let us denote

Consider the outer parameter-dependent filter

(20)

where

(21)

(22)

(23)

(24)

Note that this definition of implies that
, and for .

At points in the exposition it will be necessary to emphasize the
dependence of , , and upon the Padé order . To do so,
we will write , , and . Whenever possible, we will
suppress the superscript notation.

Lemma 9: For , there exists a frequency satisfying
(23).

Proof: The Padé approximation has unit magnitude at all
frequencies and its argument sweeps continuously from 0 to a
terminal phase of . The result follows directly.

It can also be shown that

Our next result will be important in establishing .

TABLE I
MINIMUM PADÉ ORDER REQUIRED TO GUARANTEE EXISTENCE OF

� < 1 + (�=! ) FOR A GIVEN �

Lemma 10: For every there exists an integer such
that for each there exists an satisfying
(21). Furthermore, the minimum integer satisfying

(25)

is an upper bound for , where , and
.

Proof: See Appendix B.
Remark 3: Lemma 10 was introduced only to assure exis-

tence of for sufficiently large for each .
However, the actual Padé order required for existence of

is much less than what condition (25) provides. In
practice, and may be easily determined from a numerical
analysis. See Table I.

2) Satisfaction of Properties: For the remainder of this sec-
tion, is as specified in (20) with Padé order chosen
such that and may be found from (21) and (23). We will
demonstrate that the function satisfies Properties
through . First, since the denominator of is Hur-
witz will satisfy Property . The following results
demonstrate that Properties and are also satisfied.

Lemma 11: For each , we have

where

That is, for every and , there exists a
such that .

Proof: See Appendix B.
Lemma 12: Suppose is chosen such that and exist

and . There exists a such that
, .

Proof: See Appendix B.
3) Convergence of :

Lemma 13: Define a sequence , from (21). Then,
. Furthermore, for all

(26)

where

and

Proof: See Appendix B.
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C. Inner Parameter-Dependent Filter

1) Definition: Consider the inner parameter-dependent filter

(27)
where

(28)

(29)

and is defined as before. Note that since both
and have unit magnitude,

for .
Lemma 14: For every there exists an integer such

that for each integer there exists an satisfying (28).
Furthermore, the minimum integer satisfying

(30)

is an upper bound for .
Remark 4: The lemmas in this subsection can be proven using

the same ideas as the preceding subsection for outer parameter-
dependent filters. The proofs can be found in [25].

Remark 5: With chosen such that , both
and will exist. Furthermore, with the outer and inner filters,

and , chosen to be of the same order, they are
related to each other through a dilation, a relationship which will
be important in establishing conservatism bounds.

2) Satisfaction of Properties: Clearly, this choice of inner
approximation satisfies Property . The following result
indicates that Property is also satisfied.

Lemma 15: Suppose that is as specified in (27) with
Padé order chosen such that may be found satisfying (28).
For each , we have

where

That is, for every , and , there exists a
, such that .

3) Convergence of :
Lemma 16: Define a sequence of , from (28).

Then . Furthermore, for all

(31)

where (32)

D. Conservatism
1) Single-Delay
Definition 4: The delay margin for the system (1) about a
mean delay value of , is defined by

is asymptotically stable on

Definition 5: Suppose is a condition that ensures that (1) is
asymptotically stable on . If (1) has a delay
margin about of , then the degree-of-conservatism
(d.o.c.) of condition at is defined by

where

is true on

Moreover, is said to be the delay margin provided by at .
Corollary 1: Stability Employing Outer Filter: Given a

mean value of delay , form using (20) and as
in (3). We will denote this system in the sequel as to
make the description’s dependence on delay interval half-width

explicit. If

is asymptotically stable for all

then is asymptotically stable for all .
Proof: The result follows directly from Theorem 1.

Corollary 2: If is asymptotically stable for all
, then is asymptotically stable for all

.
Proof: The result follows directly from Theorem 3.

Next, we show that the d.o.c. of Corollary 1 is always
bounded by a function of .

Theorem 5: Given , the of the delay margin provided
by Corollary 1 at satisfies

(33)

Furthermore, , and
as .

Proof: Let be the delay margin of (1) at , and suppose
that . Let be the delay margin provided by Corollary
1 with chosen as (20) with Padé order sufficiently
large . That is

is asymptotically stable

Define

is asymptotically stable
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where the system is formed as in (8) using
with the same Padé order . Due to the dilation relationship be-
tween and , we clearly have

From Theorem 3, is robustly stable for when-
ever (1) is asymptotically stable on . Also, from
Theorem 1, (1) is robustly stable on whenever

is asymptotically stable for . Therefore,

Then, a bound on the d.o.c. follows from:

Clearly, since and as

. Note that

From (26) and (32), we have

and and thus

which clearly indicates the rapid decrease in conservatism with
increasing Padé order.

Remark 6: The careful reader will notice that the parame-
ters and are functions of and, hence, , raising ques-
tions regarding how to properly interpret Theorem 5. These may
be resolved by considering how and are defined. Con-
sider for convenience. In principle, given , for any half-
width , we may determine and , define the comparison
system , and ascertain its stability. The margin is
the largest for which stability of the resulting comparison
system is achieved. The value to be used in Theorem 5 is the
value employed in constructing the comparison system with this
largest value of . The same holds regarding the value of .
With all other parameters fixed, both and will decrease
with increasing and so the potential degree of conservatism of
successive tests with increasing will decrease as well.

Lemma 17: For each ,

Proof: See Appendix B.

Fig. 1. Perturbation of the system � .

Theorem 6: Asymptotic Necessity of Outer Comparison
System: Let be the delay margin about a mean delay value of

for the (asymptotically stable) system . Then, for any
, there exists a comparison system (developed

with high enough Padé order) that proves asymptotic stability
of for all .

Proof: For any positive , the system is asymp-
totically stable for all . Corollary 2 then
implies that for any , is asymptotically stable for
all . For any , consider a perturbation
of the system , as shown in Fig. 1. Employing the small
gain theorem, for each , the feedback interconnection
of and is stable, provided that the
following condition is satisfied:

A sufficient condition for stability of the feedback interconnec-
tion of and for all is then
given by

(34)

From Lemma 17, can be made arbitrarily
small by increasing the Padé order. It then follows naturally that

can be made arbitrarily small too.

That is, there exists an integer such that for
any integer , condition (34) is satisfied. Therefore, with
any , the system is asymptotically stable for all

. This conclusion along with Corollary 1 completes
the proof.

4) Multiple-Delay:
Corollary 3: Stability Employing Outer Filter: Given a

nominal delay vector , form
using (7) and as in (6). We shall denote this system in the
sequel as to make the description’s dependence on
the delay interval half-width explicit. If

is asymptotically stable

where
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then is asymptotically stable for all , where

Proof: The result is a special case of Theorem 2.
Corollary 4: If the uncertain system is asymptotically

stable for all , then
is asymptotically stable for all .

Proof: The result is a special case of Theorem 4.
Definition 6: The delay margin for (1) about a nominal

delay vector with the aspect ratio vector ,
where , is defined by

is asymptotically stable on

Definition 7: Define an aspect ratio vector ,
. Suppose is a condition that ensures that (1)

is asymptotically stable on . If
(1) has a delay margin of about with aspect ratio vector

, then the d.o.c. of condition at is defined by

where

is true on

Moreover, is said to be the delay margin provided by at ,
with aspect ratio vector . Note that the dependence of on
is suppressed in the notation.

Theorem 7: Given , assume that the
maximum of , where is an integer, occurs
at . That is

Then, the of the delay margin provided by Corollary 3 at
with aspect ratio vector , ,

satisfies

Furthermore, , and
as .

Proof: The proof follows closely to that of Theorem 5. Let
be the delay margin of (1) at with

the aspect ratio vector . Define as the delay
margin provided by Corollary 3 with chosen as (7)
where each Padé order , for the th parameter-
dependent filter is chosen sufficiently large .
That is

is asymptotically stable

for all

Define

is asymptotically stable

for all

where the system is formed as in (11) using
with the same Padé orders . Due to the dilation relationship
between and , the following equality holds
for at least one integer , :

Furthermore, similar to the single-delay case, we have

Then, a bound on the degree of conservatism follows from:

The remainder follows in a fashion similar to Theorem 5.

V. STABILITY ANALYSIS

It has been shown that stability or instability of an uncertain
time-delay system can be ascertained by analyzing the stability
of a family of finite-dimensional, parameter-dependent systems.
Furthermore, this problem reformulation may be done with ar-
bitrarily small conservatism. It is desirable that the new problem
of finite-dimensional system analysis be carried out with min-
imal conservatism introduced. As this problem is one of real-
analysis, it cannot be performed in a lossless manner except for
in the single parameter case.

A. Single Delay

In this section, we examine the stability of the com-
parison system . Then, if is stable for all

, by Corollary 1 the stability of is guaran-
teed. For convenience in notation, throughout the rest of this
paper we denote and .
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Let be a minimal realization of .

Also denotes the order of . Then, it is

easy to verify that

is a minimal

realization of . This
realization may be used to develop the comparison system

and arrive at the following theorem.
Theorem 8: Let

(35)

where

Then, the system is asymptotically stable for any constant
time-delay if the following two equivalent
conditions hold:

c1) is Hurwitz for all .
c2) For every there exists a symmetric and posi-
tive definite matrix satisfying

Proof: First, we notice that c1) and c2) are equivalent. The
closed-loop system for the interconnection is given by

Therefore, c1) and c2) hold, if and only if is asymptot-
ically stable for all . The conclusion then follows from
Corollary 1.

To determine stability of the LTDS (1), therefore requires the
examination of whether a parameter-dependent matrix is Hur-
witz. Two approaches to this analysis problem are presented.

1) LMI Analysis: Theorem 9: Given , the system
is asymptotically stable for any constant time-delay

, if there exist symmetric matrices
, , a positive definite

matrix , a negative–definite matrix
and a matrix such that

(36)

and

(37)

where

Proof: Note that (36) implies that

(38)

Similarly, (37), along with and implies that

Pre- and postmultiplying by ,
the previous inequality is equivalent to

Multiplying (38) on both sides by yields

which immediately gives

where is given by (35). The result follows directly from
Theorem 8.

1) Eigenvalue Criterion: Herein, an alternative method for
the single delay case is provided, which incurs no additional
conservatism to that of Theorem 8.

Theorem 10: Given , is asymptotically stable for
all , if and only if the two following conditions hold:

is Hurwitz (39)

has no positive

real eigenvalue (40)

where

and

To prove Theorem 10, we need the following lemma.
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Lemma 18: [2] Let , where and are
constant square matrices. Suppose is Hurwitz and let

is Hurwitz

Then

Proof: (of Theorem 10): Let
. Then, is Hurwitz

if and only if

is Hurwitz. Let . Then, is Hurwitz for all

if and only if is Hurwitz for all

. Let . Then, is Hurwitz for
all if and only if

is Hurwitz for all . Note that by definition
when does not have any positive real

eigenvalues. The conclusion then, follows immediately from
Lemma 18.

Remark 7: Given , either Theorems 9 or 10 may be used
to confirm stability of for a chosen . The largest value
of may be found through a bisection. Once this largest value
of is found, Corollary 1 then implies stability of for all

.

B. Multiple-Delay

In this section, we examine the stability of the compar-
ison system . Then, if is stable for all

, by Corollary 3 the stability of on

is guaranteed. Let

be a minimal realization of . Also denotes
the order of . Then, a minimal realization of ,

defined in (7) is given by , where

where is a minimal realization

of . For convenience in notation, we define
and .

Theorem 11: Let

(41)

where

Then, the system is asymptotically stable for any constant
time-delay vector if the following
two equivalent conditions hold.

c1) is Hurwitz for all .
c2) For every there exists
a symmetric and positive–definite matrix

, , satisfying

Proof: The proof can be found in [25].
1) LMI Analysis: In this section, we develop a finite set of

linear matrix inequalities that allow us to verify condition (c2)
in Theorem 11. Some additional conservatism may be intro-
duced as a choice of basis functions for is made so as to
obtain a finite set.

Theorem 12: Given , the system is
asymptotically stable on , if there exist
symmetric matrices , , and

, , symmetric block diagonal matrix
, negative definite block diagonal matrix

and matrices , , ,
such that for all vertices , of the polytope

and (42)
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where

Here, and are block diagonal matrices with blocks
where the block of and belong to .

Proof: The proof can be found in [25].
Remark 8: Given and an aspect ratio vector

, the largest value of (scalar) for which Theorem
12 affirms stability of for , may
be found through a bisection algorithm. Once this largest
value of is found, Corollary 3 implies stability of for all

.

VI. NUMERICAL EXAMPLES

A. Single Delay

In this section, we examine the stability of some linear time
delay systems using presented criteria. The result of [22] is used
for comparison in the single-delay case, as it provides an accu-
rate accounting of the stability interval for small problems with
a single delay.

Example 1: Consider system (1) with and:

Note that is not Hurwitz and interval stability can not
be examined using delay-dependent criteria. Given ,
Table II summarizes the results of the computations. For this
example problem, Theorem 10 provided results less than
the bound (33), as guaranteed by Theorem 5. While the results

TABLE II
COMPUTATIONAL RESULTS FOR EXAMPLE 1

Fig. 2. Stability region in � � � plane (enclosed within the curves), and sta-
bility regions guaranteed by LMIs (inside the boxes).

provided by Theorem 9 may introduce some conservatism to
that of the comparison system, for the problem examined, no
additional conservatism is incurred.

B. Two Delays

In this section, we examine the stability of a system with two
independent delays. Note that is not Hurwitz.

Example 2: Consider system (1) with and

and

Fig. 2 shows the stability boundary and stable region as provided
by careful numerical analysis (by Continuation methods, see
[25]). Also shown are 13 stability “boxes,” each of which was
obtained by using Theorem 12 with a given and aspect ratio
vector . The area inside each box has been guaranteed stable by
the LMI condition. Note that in each of the 13 analyses, the box
obtained was the largest that could be obtained with the given
aspect ratio. That is, a corner of the box is (nearly) touching a
stability boundary.
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Fig. 3. Scheme of compact regions , , and .

VII. CONCLUSION

The results in this paper establish a method for converting the
problem of analyzing the stability of a family of infinite-dimen-
sional systems to one that considers finite-dimensional systems.
The time-delay element is replaced by a parameter-dependent
filter in a similar manner to that previously employed for delay-
dependent stability [33]. However, the problem treated here is
fundamentally different in one important aspect: the delay in-
terval does not include zero and so there is no common member
of the time-delay system and comparison system families. As
a consequence, comparison system stability does not directly
yield LTDS nominal stability, a condition desirable for the es-
tablishment of robust stability via value set covering. This diffi-
culty is overcome in this paper by the use of a special homotopy
connecting members of the two families such that the value set
of the feedback element throughout the continuation remains
within that of the parameter-dependent filter, a condition we
refer to as strong covering. Thus, robust stability of the LTDS is
bootstrapped from the comparison system without establishing
(explicitly) nominal stability of any member.

Properties are given for (outer) parameter-dependent filters
such that replacement of the delay elements by the filters will
produce a sufficient comparison system for stability of the
LTDS. Herein, properties are also provided for (inner) param-
eter-dependent filters that will yield a necessary comparison
system, which may be used to establish instability of the LTDS.
A constructive method is then provided for generation of both
outer and inner filters using Padé approximations such that the
desired filter properties are obtained for any delay interval. An
a priori known bound on the degree-of-conservatism of the
sufficient comparison system is obtained. This bound may be
reduced to any desired degree by increasing Padé order and
rapidly converges to zero. Furthermore, the bound is indepen-
dent of all problem data except the ratio . It is shown that if
the LTDS is asymptotically stable over a given closed interval,
then there exists a finite-dimensional comparison system that
will prove it to be so.

Herein, two methods are explored for stability analysis of
the outer (sufficient) comparison system: 1) an eigenvalue tech-
nique for the single-delay case which is lossless; and 2) an LMI
approach suitable for the multiple-delay problem. An important
advantage of our approach is the relative ease with which it may

be extended to the problems of analysis and controller syn-
thesis. Some results along these lines have recently been ob-
tained in [25] and [26].

APPENDIX I
PROOF OF LEMMA 2

First, we need to establish some preliminary results. Define

where . We then have Lemma 19.
Theorem 13 (Rouché’s Theorem [27]): If and are

functions continuous on a closed set and analytic in
its interior , and if on the boundary of the
set , then the functions and have the same
number of roots in , counting each root as many times as its
multiplicity indicates.

Lemma 19: The function is a finite and continuous
function of over the interval [0,1].

Proof: We need to show that for all

if and

then (43)

It follows from the general theory of functional differential
equations that for any fixed ,
has a solution in and that (e.g., see [13] or
[14]). Furthermore, , such that and

. Moreover, any finite region of the complex
plane contains at most only a finite number of elements of the
set .

Let us denote . Let

be the roots of , and let
. Then, and

let be an arbitrary real value. Define the set

and denote . Then, it follows from stability of
that for all all the roots of

must lie in . Given , define

Also, define closed compact sets
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By construction, for all , does not
vanish in and . Moreover, Property im-
plies that . Therefore, for each ,

and

exist and are finite. Consider the

closed compact set

where . By con-
struction, all the solutions of with

must lie in . Moreover, we can safely assume
that is sufficiently small so that contains only those ele-
ments of with . We search for an that validates
(43). We will limit the search to .
Now, define a closed compact set

where and .

For each , define . Similarly,
for each , define . (Note that by
construction is nonvanishing on and and,
hence, , and , ). By
continuity of the determinant at each and, particularly,
for each we have

for if

then

Similarly

for if

then

Define where , and

. Clearly, and for all with

the following two inequalities must hold:

(44)

(45)

Since for all , is analytic over and par-
ticularly over , from Rouché’s Theorem and (44), we con-
clude that and have the same number of

roots in when . Therefore, has
at least one root in . We now, show that cannot
have any root outside of with . Clearly,

cannot have a root with (or either
(44) or (45) is violated). Assume that for some , with

, has a root with .
By construction this root must lie in . However, (45) is true
on the boundary of and Rouché’s Theorem would imply that

must have a root in . This contradiction proves that
, completing the proof.

Lemma: For all , we have

i)

ii)

iii)

Proof: For , and
and therefore i)–iii) follow. For , We first prove

that if then . Assume but
. Then, there exists an with such

that . Since , and the denominator of

is Hurwitz, it follows that . Dividing
by results in and there-

fore, , contradicting . Now, assume that
but . Then, there exists an with

such that and . It
follows then immediately that and .
This contradiction completes the proof of i). ii) is proved simi-
larly and iii) is an immediate result of i) and ii).

This brings us to the proof of Lemma 2.
Proof: (of Lemma 2): Note that , and

. Therefore, and
imply that and , respectively. From
Lemma 20, we conclude that and . From
Lemma 19, is continuous for all and, therefore,
there exists a such that . From this
(and Lemma 20), follows directly. From standard
results in quasi-polynomials, implies the existence
of such that . Since the roots are
complex conjugates, we only need to consider the non-negative
imaginary axis, and the proof is complete.

APPENDIX II
PROOFS OF AUXILIARY LEMMAS

A. Proof of Lemma 7

First, we prove that there exists a constant , such that

(46)

Using (13), (46) is equivalent to
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Therefore, it suffices to find a constant , such that

(47)

(48)

(To derive (48) note that ). Clearly, with

(47) and therefore (46) holds. Moreover

Therefore, with , (46) holds. The desired result
follows immediately from (46) and (17). Proof is complete.

B. Outer Parameter-Dependent Filter: Proof of Existence and
Satisfaction of Properties

Proof: (of Lemma 10): First, consider

Note that there exists a such that
where inequality results from

inequality (18). Therefore

where the inequality follows from and . Denote
. Then:

i)

ii)

Note that

Furthermore, there exist and such that

Then

From Lemma (8), we have

Therefore, if

where

then and .
Since the right-hand side of (25) is bounded from below by

, and the left hand side can be made arbitrary
small by increasing the Padé order, for a high enough Padé order,
the inequality can always be satisfied. Since is a contin-
uous function of , and imply that
there exists at least one such that .
From ,

exists which we label as . We will now refer to the value
of chosen above as . Since (25) is automatically satisfied for
any value of , the existence of for every
is assured.

Proof: (of Lemma 11): From Lemma 6, ,
. Therefore, and only the argu-

ment need to be considered in proving the result. First, consider
the case where . We only need to
demonstrate that

(49)
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Since , from inequality (17) we have

Then, the rightmost inequality of (49) follows directly since
. Now, consider the leftmost in-

equality of (49). Since is convex for ,

is also a convex function of . Let
. Since

and ,
convexity of yields . Since

the leftmost inequality of (49) is satisfied
for . Now, consider the case where .
Then, takes all the values on the unit circle for

. Therefore, for every , such that
.

Proof: (of Lemma 12): For , contains all
points on the unit circle, so for any in this
case. For , the desired result is equivalent to

(50)

where

Choose . Then,
. Since

, the left inequality in (50) is satisfied. Furthermore, to establish
the right inequality, it suffices to demonstrate that

since , , and
. First, notice that

From

we have

Since for , , we have
, which guarantees the desired result.

Proof: (of Lemma 13): Define ,
, , and
. It is straightforward then to verify that

. From
(21) and (22), and, therefore,

, yielding

or, alternatively

(51)

Also, note that and
. Then, from Lemma 8, we have

Clearly

Furthermore, for , we have

It then follows that . From the
inequality , we have

Now, employing (15) and simplifying the previous inequality,
we have

Then, from we have .
Clearly
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C. Proof of Lemma 17

First notice that

Since and , we have

Using (19), an upper bound for both and can be found in
the following way:

Now, consider the two following cases:

i) ii)

Case i):

Since we have

(52)

where (52) follows from (26) and (31).

Case ii):

Therefore, an upper bound on , for all , is given by

We now, turn our attention to

Consider the two following cases:

i) ii)

Case i):

Since , we have

Cases ii):

Therefore, an upper bound on , for all , is given by
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We have

It is clear that the right hand side of the above inequality goes
to zero as goes to infinity. Therefore,
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